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Abstract

This dissertation investigates the circumstances that can have impact on spreading and

controlling tuberculosis disease, first, we studied on the the dynamics of the tuberculo-

sis disease (4.1)-(4.8) with interventions vaccination, chemoprophylaxis and therapeutics

treatments of latent and active tuberculosis respectively. The positivity and bounded

of the solutions of the dynamical system (4.1)-(4.8) are proved. Stability analysis of

disease-free-equilibrium point (DFE) and endemic equilibrium point (EE) were per-

formed. We computed the effective reproduction number; and the computational results

showed that DFE is locally and globally asymptotically stable if the effective reproduc-

tion number,Reff < 1 and unstable if Reff > 1. We have proved the local and global

stability of EE by using the methods Gershgorin Discs Theorem and Lyapuno function

respectively.

We have extended the dynamical system (4.1)-(4.8) to formulate the second nonlinear

dynamical system (5.1)-(5.10) by disaggregating the tuberculosis disease in two strains

[drug sensitive (DS) and multi drug resistance strains (MDR)] of tuberculosis in Ethiopia

context. We proved that the solutions of this two strain tuberculosis dynamical system

(5.1)-(5.10) are positive and bounded. We found that the dynamical system (5.1)-(5.10)

has disease free and endemic equilibrium points. We proved that the local and global

stability of disease free equilibrium point and endemic equilibrium points. We found

the effective reproduction number of the dynamical system (5.1)-(5.10) which experience

for drug sensitive strain and the effective reproduction number of the dynamical system

(5.1)-(5.10) which experience for multi drug resistance strain.

Using standard data collected from different sources we have done numerical simulation

on the dynamical system (4.1)-(4.8). we found the numerical value of the effective repro-

duction number of the dynamical system (4.1)-(4.8) is, Reff = 0.7 < 1 which shows that

the tuberculosis disease not spreads in the community. The rate of vaccine waning is the

most influential parameter to change the effective reproduction number of the dynamical

system (4.1)-(4.8).

Using real data collected from different health centers in Ethiopia we performed numer-

ical simulations on the dynamical system (5.1)-(5.10). We found that the numerical

xvi



value of the effective reproduction number for the drug sensitive tuberculosis Reff (DS)

is 1.03 and the effective reproduction number for the multi-drug resistance tuberculo-

sis Reff (MDR) is 4.78 and the effective reproduction number of the dynamical system

(5.1)-(5.10) max{1.03, 4.78} = 4.78. So that MDR strain is spreads strongly than DS

strain. Using sensitive analysis we identified the most influential parameter to change

the behavior of the solution of the dynamical system (5.1)-(5.10) and as the result the

number of susceptible or vaccinated individuals make effective contacts with an infectious

individual is the most influential parameter in the dynamical system (5.1)-(5.10).
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Chapter 1

Introduction

1.1 Background on Epidemics

Epidemiology studies the spread of diseases caused by pathogens, such as viruses or

bacteria, in populations of hosts, which can be humans, animals, or plants [100]. The

goal is to predict the time course of an outbreak of a given disease in a population and

the effect of conceivable control measures, such as vaccination, quarantine, treatment,

culling, or behavior modification on the severity of the outbreak [90].

The emergence and re-emergence of infectious diseases have become a significant world-

wide problem. Proper understanding of transmission mechanisms of diseases caused by

existing and new pathogens may facilitate devising prevention tools. Prevention tools

against transmissions, including vaccines and drugs, need to be developed at a similar

pace to that of the microbes. Implementation and proper use of these sophisticated tools

against the microbes is another challenge [5, 45]. Tuberculosis is one of a highly infectious

diseases caused by infection with the bacteria mycobacterium tuberculosis and it is an

airborne disease and so it is primarily transmitted through the respiratory route [10, 12].
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1.1.1 Infectious Disease

An infectious disease is caused by various microbes or pathogen. Most of them are

usually microorganisms. Few of them are visible by naked eyes. The most common

pathogens are different types of viruses and bacteria. Fungi and Protozoa are also known

as pathogens and are responsible for various diseases. Diseases caused by these pathogens

are termed as ’infectious’ as these pathogens can be easily transmitted from one infected

person to another non-infected person. The most common and well-known example of

such diseases could be influenza or flu that is caused by some kinds of viruses, TB, HIV,

mumps, measles, rubella, smallpox, malaria have also caused millions of infections and

deaths [5, 89].

TB usually affects the lungs but it can also affect other parts of the body such as the brain,

lymph nodes, kidneys, bones, joints, larynx, intestines or eyes. TB outside the lungs is

referred to as extra-pulmonary TB. There are generally two stages of TB infection, one

where the bacteria can be spread and can cause illness and one where the bacteria is in

a person’s body, but is not causing disease and cannot be spread.

People with TB infection have TB bacteria in their bodies but they are not sick because

the bacteria are not active. These people do not have symptoms of TB disease and

they cannot spread the bacteria to others. However, they may develop TB disease in the

future. They are often prescribed treatment to prevent them from developing TB disease.

Tuberculosis can affect anyone. People infected with TB bacteria have a 10% lifetime risk

of developing TB disease. However, persons with compromised immune systems, such

as people living with HIV, malnutrition or diabetes, or people who use tobacco, have a

much higher risk of developing TB disease.

Pathogens

As mentioned above, pathogens are solely responsible for causing an infectious disease. In

this sub-section we briefly review some common pathogens that cause diseases. The most

common pathogens are: Bacteria: Bacteria, single-celled organisms, are well known

2



microbes that cause various diseases. However, most of the bacteria are harmless and

some are even beneficial to human.

Bacteria are useful in producing cheese, yogurt, and chemicals and medicines. They also

play some critical role to synthesize food particles in our intestine to produce energy.

Insulin that saves millions of diabetic patients is also produced from genetically modified

bacteria.

Some bacteria, however, are harmful and life threatening. Gastritis, pneumonia, menin-

gitis, gonorrhea are some examples caused by various bacteria. Most of the bacterial

diseases can be treated by antibiotics.

Viruses: Viruses are the most common and harmful microorganisms that cause severe

diseases to human and other species. Influenza or flu which probably no one can avoid is

caused by viruses. Other examples of viral diseases include chickenpox, herpes, human

papillomavirus (HPV), mumps, measles, rubella, viral hepatitis, viral meningitis, and

viral pneumonia.

Human Immunodeficiency Virus (HIV) is another deadly virus that spreads mainly

through sexual contacts and causes AIDS. Viruses cannot live by themselves, and they

need other living cells for their reproduction [75, 98].

Unlike bacterial diseases, viral diseases cannot be treated by antibiotics. Since viruses use

host’s cells for reproduction, an antiviral drug could be highly toxic and life-threatening

for the host. Thus, instead of killing the target cells, antiviral drugs are used to inhibit

viral replication processes. Antiviral drugs act to limit the viral loads and helps keep

the infected individual healthy until host’s immune system controls the infection and

eliminates the pathogen [5, 33, 107].

Fungi: Fungi are microorganisms that widely vary in sizes from unicellular, such as

yeast, to multicellular, such as mushrooms and toadstools which can easily be seen with

naked eyes. Fungi play a critical role in decomposing dead materials which in turn

provide nutrients to the land. The lifesaving antibiotic penicillin is also produced from

the fungus Penicillium chrysogenum. Some fungi are harmful by causing infections to

plants and animals.
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Candidiasis, histoplasmosis, mucorycosis, ringworm are common examples of diseases

caused by fungi. Vaginal yeast and thrush are fungal diseases that can cause infection to

the immune compromised individuals relatively easily [5, 89].

Protozoa: Protozoa are comparatively large single-celled organisms. Some protozoa

are useful. For example, in the sewage treatment systems, protozoa are used for de-

composing organic matters. Some others are human parasites that cause diseases, such

as malaria, toxoplasmosis, cryptosporidiosis, trichomoniasis, leishmaniasis, amoebiasis,

amoebic dysentery, and acanthamoeba keratitis. Protozoa can be spread through con-

taminated food, water or through a vector or carrier like arthropod mosquito. The

well-known protozoa species Plasmodium vibax that causes malaria spread through fe-

male anopheles mosquitoes. When a female mosquito bites an infected person it receives

the parasite plasmodium. The parasite grows and reproduces inside the mosquito. When

this mosquito bites another person the parasite can be transmitted through its saliva to

that person. Malaria is one of the leading death causing diseases that is responsible for

about 700,000 deaths each year worldwide [5, 89]. There are some other pathogens that

also cause infectious diseases, e.g parasitic helminths, ectoparasites and prions.

Modes of Transmission

Infectious diseases can spread in various ways and pathogens cause infections by different

modes of transmission. Some infections may take place through a direct contact while

other may be caused through indirect contacts. Transmission can also be made through

carriers or vectors. For examples, malaria, filariasis, west Nile, dengue, chikungunya, and

many others spread through mosquitoes. Based on their modes of transmission there

are airborne diseases and sexually transmitted diseases, and they have been paid much

attention. Many diseases, e.g. TB, influenza, SARS (Severe Acute Respiratory Syndrom),

are airborne and can be transmitted through air. The airborne infection spreads from

an infected person to an uninfected person through sneeze, cough laugh, singing, talking

etc. The microbes that are discharged from an infected person may remain on the dust

particles or any other medium. An infection may take place when these microbes are

inhaled or reach mucus membrane of an uninfected person through body contact [5].
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Hand-shaking also could be a potential way for transmition of infections.

Mycrobacterium tuberculosis is carried in airborne particles, called droplet nuclei, of

1– 5 microns in diameter. Infectious droplet nuclei are generated when persons who

have pulmonary or laryngeal TB disease cough, sneeze, shout, or sing. Depending on

the environment, these tiny particles can remain suspended in the air for several hours.

Transmission occurs when a person inhales droplet nuclei containing M. tuberculosis,

and the droplet nuclei traverse the mouth or nasal passages, upper respiratory tract, and

bronchi to reach the alveoli of the lungs figure and the dots in the air represent droplet

nuclei containing tubercle bacilli 1.1 [5, 96].

Figure 1.1: ways at which TB spread from person to person through the air.

A significant number of diseases, on the other hand, are Sexually Transmitted Diseases

(STD) and they are also transmitted through contaminated blood and semen, breast-

feeding, or during childbirth. HIV is one of the most death causing STDs. Other STDs

including herpes, syphilis, gonorrhea, chlamydia and trichomonias is also cause significant

infection and mortality [5, 75].

Immune System

The human body is equipped with a strong defense system to protect against pathogenic

infections. This defense system is designed to protect the host from very simple to

sophisticated attacks by the pathogens. Our skin acts as a first defense by drawing

a barrier for any harmful entities to get inside. Once this barrier is penetrated, some

volunteers from the immune system come forward to act as a secondary defense. A
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pathogen has to face several stages of the immune defense before it can cause disease and

harm to the host [5, 33].

Our whole immune system is divided into two types innate immune system and adap-

tive immune system. The innate immune system is comprised of various immune cells,

neutrophils, mast cells, natural killer cells, and monocytes, and can attack any suspected

foreign intruders with no prior knowledge about the intruders. The innate immune sys-

tem has a natural ability that can detect almost every invading microbes [5]. This natural

response is also referred to as to non-specific defense mechanism as it takes action almost

immediately as soon as the pathogens enter into the body.

On the other hand, the adaptive immune system is antigen specific. It is also known as cell

mediated immune system and is comprised of B cell and T cell. This immune system is

much more complex than the innate immune system. It requires some information about

the pathogens in order to attack them efficiently. Such information can be provided by

some components from the innate immune system or by somebody within the adaptive

immune system. The adaptive immune mechanism also keeps memory of the previous

infections or pathogens. This memory is used to prevent any successive infection at the

first place before any signal is received from the innate system [5]. Therefore, a pathogen

cannot infect a host successfully a second time unless it evolves significantly enough to

evade the host’s adaptive immune defense.

The combined efforts of innate and adaptive immune systems keep our body safe and

healthy. However, in some pathogenic infections, host-pathogen battle may last longer

(e.g. HIV infection) or immune defense may fail resulting in a tragic death of the host.

The infections that are cleared off by the innate immune system or by the drug supplement

can be repeated. That means the host may be infected again by the same pathogen.

Usually, bacterial infections fall into this category. On the other hand, viral infections

cannot be cured by drug supplement. The adaptive immune system itself can clear the

viral infections and also develop immunity. That is why most viral infections go away on

their own in few days without any medication. Since a viral infection boosts immunity

successive infection by the same virus seldom occur in the host. The host is now recovered

permanently from that pathogenic infection. However, some viral infections such as
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herpes, Hepatitis B and C, and HIV can cause latent infection that lasts for a long time.

1.1.2 Disease Prevention and Control

One of the effective ways to control a disease is to reduce contacts. However, in the modern

life with increased interactions among individuals, this way is not easy to achieve. In

addition to maintaining social distance, alternate prevention measures need to be adopted.

Vaccines and drugs are the two widely used prevention tools that can potentially reduce

transmissions and control diseases.

Vaccines

A vaccine is used to boost immune system against some specific pathogen. The substance

contained in a vaccine has similar physical properties to those of a pathogen. Typically a

vaccine can be thought of a fake pathogen that has no ability to reproduce and to cause

an infection.

It can be made of a weak or killed pathogen. As vaccines are similar to pathogenic mi-

croorganism, they can stimulate the immune system of the host and builds up antibodies

against the pathogens to recognize them as foreigners. Thus, whenever such a true mi-

croorganism is encountered within a host, the immune system destroys it. This kind of

phenomenon is known as immunity. Thus, as long as a vaccine for a disease is available,

it is an ideal means of protecting a healthy population from the disease.

Though vaccines are very effective against transmission, typically, there are limits on

the amounts, especially in developing countries. Thus, how to distribute the limited

vaccines becomes crucial for optimal benefit. Social, economical and ethical issues could

be major obstacles in implementation of vaccines [5]. Certain groups of individuals may

have higher susceptibility to the infections than others. In influenza, for example, school-

going children can be infected more easily and can spread the disease more rapidly than

other individuals [5]. Thus to control infections by using vaccines, a proper distribution

and implementation strategy is very crucial.
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Presently, the only effective vaccine for TB is Bacillus Calmette-Guerin (BCG) which is

usually given to infants [73, 79, 82]. This vaccine has a demonstrated efficacy ranging from

no protection to 80% protection though a meta-analysis estimated that the overall efficacy

of BCG is 50% [73, 110]. Imperfect vaccine efficacy against infection (i.e., vaccine does

not offer 100% protection against infection invaccinated individuals)is the main sources of

backward bifurcation in vaccination models [2]. The BCG vaccine, which was developed

almost 100 years ago and has been shown to prevent severe forms of TB in children, is

still widely used [10, 57, 73, 82].

Figure 1.2: BCG Vaccine

However, it is inadequate in preventing pulmonary TB in adults and there is currently no

vaccine that is effective in preventing TB disease in adults, either before or after exposure

to TB infection.

Drugs

Effective drug treatments of TB were first developed in the 1940s. The currently recom-

mended treatment for cases of drug-susceptible TB is a 6-month regimen of four first-line

drugs: isoniazid, rifampicin, ethambutol and pyrazinamide. Treatment for Rifampicin-

Resistant TB (RR-TB) and Multi-Drug-Resistant TB (MDR-TB) is longer, and requires

more expensive and more toxic drugs (WHO, 2017). Drug Susceptibility Testing (DST)

which is available in many countries, and is very important, provides information about

which drugs a person is resistant to. TB can usually be cured and more than twenty
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drugs have been developed for treating TB. But most of the drugs were developed many

years ago. The treatment usually consists of a combination of TB drugs that must be

taken for at least six months. But the treatment will only be successful if the drugs are

taken exactly as required for the entire length of time [38, 54, 103].

Treatment of tuberculosis (TB) disease is not simple and Drug-Susceptible Tuberculosis

(DS-TB) requires a multiple drug regimen taken for at least 6 months. Multi-Drug-

Resistant Tuberculosis (MDR-TB) treatment regimens are significantly longer, cause se-

rious side effects and are very expensive [41, 54, 102].

Until early 2016, the treatment regimens recommended by WHO typically lasted for

20 months, and cost about US$ 2000–5000 per person. As a result of new evidence

from several countries, WHO issued updated guidance in May 2016. Shortened regimens

of 9–12 months are now recommended for patients (other than pregnant women) with

pulmonary RR-TB or MDR-TB that is not resistant to second-line drugs. The cost of a

shortened drug regimen is about US$ 1000 per person. The latest data reported to WHO

show a treatment success rate for MDR-TB of 54%, globally, reflecting high rates of

loss to follow-up, unevaluated treatment outcomes and treatment failure. In addition to

providing a cure, drugs can also play a significant role in reducing transmission [20, 41, 52].

1.2 The Two-Strain Tuberculosis

In 1882, the Germany, microbiologist Robert Koch discovered the tubercle bacillus, at a

time when one of every seven deaths in Europe was caused by TB (WHO) [87]. In the

eighteenth century, Western Europe suffered terribly from this disease with a prevalence

as high as 900 deaths per 100,000. This was largely due to poor ventilation, overcrowded

housing, primitive sanitation, malnutrition among other risk factors that led to the epi-

demic. Today, this disease ranks as the second leading cause of morbidity and mortality in

the world from a single infectious agent, after the human immunodeficiency virus (HIV)

[60, 81].

World Health Organization (WHO) declared TB as global epidemic in 1993.The resur-

gence of tuberculosis in the 1990s and the emergence of drug-resistant tuberculosis in the
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first decade of the 21st century increased the importance of epidemiological models for

the disease [61, 87].

Tuberculosis (TB) is a preventable and curable disease caused by Mycobacterium Tuber-

culosis (MTB) that most often affects the lungs. Tuberculosis is a contagious disease that

spreads from person to person through the air [22, 84]. When people with pulmonary

TB cough, sneeze or spit, they propel the TB germs into the air [80]. If someone has

pulmonary disease, which is TB in the lungs, then they may have a bad cough that lasts

longer than two weeks. They may also have pain in their chest and they may cough up

blood or phlegm from deep inside their lungs. Other symptoms of TB include weakness

or fatigue, weight loss, lack of appetite, chills, fever and night sweats [76].

1.2.1 Drug Sensitive Tuberculosis

Tuberculosis is a bacterial disease caused by mycobacterial tuberculosis with an estimated

one third of the world population [3, 31], TB remains a major global health problem. In

2012, an estimated 8.6 million people developed TB and 1.3 million died from the disease

(including 320,000 deaths among HIV-positive people).

Ethiopia is one of the 22 High-Burden Countries (HBCs) that account for about 80%

of the world’s TB cases. According to the Global TB report 2013, there were an esti-

mated 230,000 (247 per 100,000 populations) incident cases of TB in Ethiopia in 2012.

According to the same report the prevalence of TB was estimated to be 310,000 (224 per

100,000 populations). There were an estimated 16,000 deaths (18 per 100,000) due to TB,

excluding HIV related deaths in Ethiopia during the same period [38, 41, 49, 85, 103].

Notified cases of all forms of TB increased significantly in Ethiopia from just over 73,000

in 1999 to a peak of just over 159,000 in 2011, after which there has been an apparent

decline in 2012. Notably, rates for extra-pulmonary TB are as high as those for smear

positive and smear negative TB. The proportion of pulmonary TB cases detected is only

60-65% while that of extra-pulmonary TB cases is 35-40%. Among the pulmonary TB

cases, the number of smear negative cases is more than the smear positive pulmonary

TB cases. This is a peculiar picture seen in Ethiopia for over a decade. Moreover, the

2010/11 national TB Prevalence survey showed that smear positive cases accounted for
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only 43% of culture positive cases. This indicates the need for more sensitive and specific

diagnostics for improving the diagnosis of smear negative TB cases [41, 52, 85, 103].

Human Immunodeficiency Virus (HIV) is a major contributing factor for developing ac-

tive TB. HIV infected individuals had 3.5-fold higher risk of tuberculosis than HIV neg-

ative individuals. Ethiopia is also among high TB/HIV burden countries with over 10%

TB/HIV co-infection rate. Among people living with HIV, laboratory diagnosis of TB is

more difficult compared to HIV negative, and mortality rates are higher.

A person has drug resistant TB if the TB bacteria that the person is infected with, will

not respond to, which means that they are resistant to, at least one of the main TB

drugs. Drug susceptible TB is the opposite. If someone is infected with TB bacteria that

are fully susceptible, it means that all of the TB drugs will be effective so long as they

are taken properly. It still means that several drugs need to be taken together to provide

effective TB treatment [10, 43, 59].

1.2.2 Drug-Resistance Tuberculosis

TB is considered drug-resistant (DR) when the organism (mycobacterium tuberculosis)

is not killed by anti-TB drugs. And this can be confirmed by a laboratory test called

drug susceptibility test (DST) [41, 69].

Four different types of drug resistance:

• Mono-resistance: resistance to one anti-tuberculosis drug.

• Poly-resistance: resistance to more than one anti-tuberculosis drug, other than

both isoniazid and rifampicin.

• Multi-Drug-Resistance (MDR-TB): resistance to at least isoniazid and ri-

fampicin.

• Extensive Drug-Resistance (XDR-TB): resistance to any fluoroquinolone, and

at least one of the three injectable SLDs (capreomycin, kanamycin and Amikacin),

in addition to multidrug-resistance.
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MDR-TB is the deadlier, harder to diagnose and much more difficult to treat. Accord-

ing to a recent unpublished study in Ethiopia, the proportions of MDR-TB among the

nation’s new and recurrent TB cases are 2.3% and 17.6% respectively. Ethiopia has

also seen patients with cases of extensively drug-resistant TB (XDR-TB), cases due to

MDR-TB bacteria that are also resistant to the backup, or the second-line, TB drugs

usually used for treating MDR-TB. Compared to MDR-TB diagnosing XDR-TB is even

more difficult and treatment outcomes are even worse, leading to higher mortality rates

[38, 52, 60, 102].

Ethiopia is one of 27 countries named by WHO as having high burdens of MDR-TB.

About 2% of new cases and 18% of the retreatment cases are MDR-TB. Based on WHO

estimates in 2014 that about 1,300 MDR-TB occurred among the 120,000 individuals with

diagnosed and notified TB cases but, due to inadequate testing, only about 503(39%) of

Ethiopia’s MDR-TB patients are being actually identified [41, 85].

In 2012, Ethiopia achieved an excellent 83% treatment success rate for the cohort of 271

MDR-TB patients starting on the recommended two-year treatment regimen. However,

this impressive accomplishment is over shadowed by the fact that the number of patients

treated is only a small proportion of the estimated number of new MDR-TB cases each

year. The remaining undetected cases continue to transmit MDR-TB [52, 102, 103].

In Ethiopia the MDR-TB prevalence based on the 2005 nationwide survey was 1.6% and

11.8% among new and retreatment cases, respectively. Rifampicin resistance was lower

than 2% in new cases. Annually 2000-2500 MDR-TB cases are estimated to occur among

the notified pulmonary TB cases. However in year 2012 for instance, only 212 (10.1%)

MDR-TB cases were detected. This indicates majority of the expected MDR-TB cases

remain undiagnosed and continue to transmit the disease in the community [41, 102, 103].

With direct U.S. government support, the Ethiopian government has begun rolling out

GeneXpert TB test machines designed to rapidly and accurately identify most people

with MDR-TB. As of early Oct. 2015, 105 health facilities had access to these machines,

but their use and effectiveness is contingent on adequate supplies of electricity and testing

materials, and the government of Ethiopia recognizes gaps in implementing the national

drug-resistant TB strategies [41, 81].
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1.3 Mathematical Models in Infectious Diseases

Mathematical models have been used to study the dynamics of infectious diseases for

more than a century. In recent years, applications of mathematics in infectious disease

have shown remarkably growing trends. As a result, mathematical modelling is very

important tool in analyzing the spread and control of infectious diseases [36, 106] The

earliest mathematical modelling can be traced back to the 18th century when Daniel

Bernoulli formulated a model for smallpox to estimate the effectiveness of variolation

of healthy population with smallpox [5, 59]. However, mathematical models have been

growing since the middle of the 20th century after Kermack and McKendrick published

their paper on epidemic models in 1927 which contains threshold results that determines

whether an epidemic outbreak may occur or not [5, 59].

Rapid diagnostic test, available clinical data and electronic surveillance can facilitate

the applications of mathematical models to testing scientific hypotheses and to design

practical strategies [5]. The emerging and reemerging diseases have stimulated the interest

in mathematical modeling. Models can provide estimates of underlying parameters of a

real world problem which are difficult or expensive to obtain through experiment or

otherwise.

By estimating transmission rate, reproduction number and other variables and parameters

a model can predict whether the associated disease will spread through the population or

die out. It can also estimate the impact of a control measure and provide useful guidelines

to public health for further efforts required for disease elimination.

1.3.1 Basic Reproduction Number

The basic reproduction ratio (or number) R0 is one of the most important concepts

in epidemic theory and is the most widely used epidemiological measurement of the

transmission potential in a given population. The basic reproductive number is defined

as the expected number of new infections from one infected individual in a fully susceptible

population through the entire duration of the infectious period. The reproduction number

is used to predict whether the epidemic will spread or die out.
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For a given system, with say n compartments, a general dynamical system x
′ = f(x)

where x = (x1, x2, ..., xn) that describes the evolution of the system is given by:

dx1
dt

= f1(x1, x2, ..., xn−1, xn)
dx2
dt

= f2(x1, x2, ..., xn−1, xn)
...

dxn−1
dt

= fn−1(x1, x2, ..., xn−1, xn)
dxn

dt
= fn(x1, x2, ..., xn−1, xn)

(1.1)

Rewrite the system (1.1) as f(x, y) := (F−V )x−F (x, y)+V (x, y) where, x = (x1, x2, ..., xm)T ∈

Rm and y = (y1, y2, ..., yp)T ∈ Rp represent the populations in disease compartments and

non-disease compartments, respectively; F = (F1, F2, ..., Fm)T and V = (V1, V2, ..., Vm)T ,

where Fi represents the rate of new infections in the ith disease compartment; and Vi

represents the transition terms.

According to Diekmann and Heesterbeek [26], we call FV −1 the next generation matrix

for the model and set the reproduction number,R0 = ρ(FV −1) where F = ∂Fi(x0)
∂xj

and

V = ∂Vi(x0)
∂xj

for i ≥ 1 for the number of compartments, and 1 ≤ j ≤ m for the infected

compartments only, where Fi are the new infections, while the Vi transfers of infections

from one compartment to another, x0 is the disease-free equilibrium state. ρ(FV −1)

which is defined as the spectral radius (largest eigenvalue) of a matrix FV −1. F and V

are m × m matrices, where m is the number of infected classes. Consider an infected

individual introduced into compartment k of a disease-free population. The (i, j) entry of

F is the rate at which an infected individual in compartment j produces new infections

in compartment i, and the (j, k) entry of V −1 is the average time an infected individual

spends in compartment j during its lifetime, assuming that the population remains near

the DFE and barring reinfection. Hence, the (i, k) entry of the product FV −1 is the

expected number of new infections in compartment i produced by the infected individual

originally introduced into compartment k.

The basic reproductive number forms a threshold quantity for most models of infectious

diseases since for reproductive number is less than unity, the disease-free equilibrium

point is locally asymptotically stable while for reproductive number is greater than unity,

the disease-free equilibrium point is unstable. In many models, there is a bifurcation at

the basic reproductive number is equal to 1.
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1.4 Stability Analysis

Mathematical models are becoming more and more complicated when higher degree of

nonlinearity is adopted to address real-world problems. Finding an explicit solution

of these models is almost impossible. Though numerical simulations can provide good

approximating solutions with fixed parameters, general solution may remain unknown.

When general solution is hard to achieve, stability analysis can be resorted to get a sense

of solution’s behavior. In fact, stability analysis can predict the long time behaviour of

the model solutions very well.

In general, there are two types of stability analysis, local and global, widely used in the

literature. Local stability is concerned with behaviour of the solution of the model near

an equilibrium point, while global stability can describe solution behaviour in the whole

domain.

1.4.1 Local Stability Analysis of Equilibrium Points

In mathematical modelling, it is often very important to know the behavior of a dynamical

system near an equilibrium point [36]. It is important to know whether or not future

evolutions of the system will remain close to the equilibrium point if initial conditions

are close to the equilibrium.

Definition 1.1. A equilibrium point x̄ of a dynamical system is said to be locally stable

if all eigenvalues of the Jacobian evaluated at x̄ are negative.

Definition 1.2. The Jacobian of the dynamical system represented in (1.1) is given by:

J =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn−1

∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn−1

∂f2
∂xn

... ... . . . ... ...
∂fn−1
∂x1

∂fn−1
∂x2

· · · ∂fn−1
∂xn−1

∂fn−1
∂xn

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn−1

∂fn

∂xn


(1.2)
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The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic polynomial must have the

same sign and non-zero if all the roots are in the left-hand plane. These requirements are

necessary but not sufficient. If the above requirements are not met, it is known that the

system is unstable. But, if the requirements are met, we still must investigate the system

further to determine the stability of the system.

Consider the characteristics equation of a given Jacobian matrix

Pn(λ) = anλ
n + an−1λ

n−1 + an−2λ
n−2 + ...+ aλ+ a0

To determine whether this system is stable or not, check the following conditions:

Two necessary but not sufficient conditions that all the roots have negatives real parts

are:

1. All the polynomial coefficients must be the same sign.

2. All the polynomial coefficients must be nonzero.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for the stability of

linear systems. Characteristic equation.

anλ
n + an−1λ

n−1 + an−2λ
n−2 + ...+ aλ+ a0 = 0

Routh array:

λn an an−2 an−4 · · ·

λn−1 an−1 an−3 an−5 · · ·

λn−2 b1 b2 b3 · · ·

λn−3 c1 c2 c3 · · ·
... ... ... ... ...

λ1 · · · · · · · · · · · ·

λ0 · · · · · · · · · · · ·
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where b1 = − 1
an−1

∣∣∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣∣∣ = an−1an−2−anan−3
an−1

, b2 = − 1
an−1

∣∣∣∣∣∣∣
an−2 an−4

an−1 an−3

∣∣∣∣∣∣∣
c1 = − 1

b1

∣∣∣∣∣∣∣
an−1 an−3

b2 b3

∣∣∣∣∣∣∣ and so on.

The necessary condition that all roots have negative real parts is that all the elements of

the first column of the array have the same sign. The number of changes of sign equals

the number of roots with positive real parts.

Gershgorin Discs Theorem

Let A = [aij] be a complex n× n matrix. Define

Ri(A) = Σj 6=i|aij|, for i,j=1,...,n

Di(A) = {z ∈ C| |z − aij| ≤ Ri(A)},

G(A) = ∪ni=1{z ∈ C| |z − aij| ≤ Ri(A)}

We call these disks Di(A) the Gershgorin discs and their union G(A) is called the Ger-

shgorin domain

Theorem 1.1. (Gershgorin Circle Theorem, 1931) Every eigenvalue of the n×n complex

matrix A lies within at least one of the Gershgorin disks Di(A).

Proof. Suppose Ax = λx for x 6= 0. Let xi be the largest component in x with respect

to modulus. Then

Ax = λxΣn
j=1aijxj = λxi

Σn
j 6=iaijxj = (λ− aii)xi

Therefore, |λ− aii| = |Σn
j 6=i

aijxj

xi
| ≤ Σn

j 6=i|aij| = Ri

Corollary: Let A = [aij] be an n× n complex matrix. If Σn
j 6=i|aij| < |aii| for all i, then

A is invertible.

Theorem 1.2. (Gershgorin’s disc theorem) For any complex n×n matrix A, all the eigen-

values of A belong to the Gershgorin domain G(A). Furthermore the following properties
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hold: If A is strictly row diagonally dominant, that is Σn
j=1,j 6=i|aij| < |aii| for i = 1, ..., n

then A is invertible.

i. If A is strictly row diagonally dominant, and if aii > 0 for i = 1, ..., n, then every

eigenvalue of A has a strictly positive real part.

ii. If A is strictly row diagonally dominant, and if aii < 0 for i = 1, ..., n, then every

eigenvalue of A has a strictly negative real part.

Theorem 1.3. (Gershgorin’s disc theorem) For any complex n × n matrix A, all the

eigenvalues of A belong to the Gershgorin domain G(A). Furthermore the following prop-

erties hold: If A is strictly column diagonally dominant, that is Σn
i=1,j 6=i|aij| < |aii| for

i = 1, ..., n then A is invertible.

i. If A is strictly column diagonally dominant, and if aii < 0 for i = 1, ..., n, then

every eigenvalue of A has a strictly negative real part.

ii. If A is strictly column diagonally dominant, and if aii > 0 for i = 1, ..., n, then

every eigenvalue of A has a strictly positive real part.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance

are necessary for inevitability.

1.4.2 Global Stability of Equilibrium points

The indirect method of Lyapunov which is used to determine the local stability of the

equilibrium points has some limitations. Its results apply only in cases where there are

infinitesimal perturbations about the equilibrium. The direct Lyapunov method addresses

this problem.

Definition 1.3. An equilibrium point x̄ is said to be globally asymptotically stable if it

is asymptotically stable for all initial condition x0 ∈ Rn

18



Lyapunov Stability

The method of Lyapunov functions enables the analysis to be extended beyond only a

small region near the equilibrium point that is it shows global stability analysis. Let

x = x0 be an equilibrium point for ṗ = f(x). Let V : D → R : D ⊂ Rn be a continuously

differentiable function on a neighborhood D of x = x0, such that

(1) V (x0) = 0

(2) V (x) > 0 in D − {x0}

(3) V̇ ≤ 0 in D − {x0}

Then x = x0 is stable. Moreover, if V̇ ≤ 0 in D − {x0} then x = x0 is asymptotically

stable.The continuously differentiable function V (x) is called a Lyapunov function.

A Matrix-theoretic Method

A matrix theoretic method is presented to guide the construction of a Lyapunov function.

Following [109], set f(x, y) := (F −V )x−F (x, y)+V (x, y) Where, x = (x1, x2, ..., xn)T ∈

Rn and y = (y1, y2, ..., ym)T ∈ Rm represent the populations in disease compartments and

non-disease compartments, respectively; F = (F1, F2, ..., Fn)T and V = (V1, V2, ..., Vn)T ,

where Fi represents the rate of new infections in the ith disease compartment; and Vi

represents the transition terms, for example, death and recovery in the ith disease com-

partment. Then for the disease compartments can be written as

x
′ = (F − V )x− f(x, y) (1.3)

Let ωT ≥ 0 be the left eigenvector of the nonnegative matrix V −1 F corresponding to the

eigenvalue ρ(V −1F ) = ρ(V −1F ) = R0. The following result provides a general method

to construct a Lyapunov function for (1.3). Note that this type of Lyapunov function

involving the Perron eigenvector has previously been used to study the global dynamics

for several specific disease models; see, for example, [109].

Theorem 1.4. (Perron-Frobenius)

Let A be an irreducible non-negative n × n matrix with spectral radius ρ(A) = r . Then

the following statements hold:
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• r is a positive simple eigenvalue of the matrix A.

• A has a left eigenvector ω with eigenvalue r whose components are all positive.

Theorem 1.5. Let F, V and f(x, y) be defined above. If f(x, y) ≥ 0 in ⊂ Rn+m, F ≥

0, V −1 ≥ 0, and R0 ≤ 1, then the function Q = ωTV −1x is a Lyapunov function for model

(1.3) on Γ.

Proof. DifferentiatingQ along solutions of (1.3) givesQ′ = Q
′|1.1 = ωTV −1x

′ = ωTV −1(F−

V )x − ωTV −1f(x, y) = (R0 − 1)ωTx − ωTV −1f(x, y) Since ωT ≥ 0, V −1 ≥ 0, and

f(x, y) ≥ 0 in Γ, the last term is non-positive. If R0 ≥ 1, then Q
′ ≤ 0 in Γ, and

thus Q is a Lyapunov function for system (1.3).

A Graph-theoretic Method

A directed graph (digraph) G consists of a set of vertices and a set of ordered pairs (i, j)

of (not necessarily distinct) vertices; each such pair (i, j) is called an arc from its initial

vertex i to its terminal vertex j. The in-degree of a vertex i, denoted as d−(i), is the

number of arcs in G whose terminal vertex is i, and the out-degree d+(i) is the number

of arcs whose initial vertex is i. A subdigraph H of G is spanning if H and G have the

same vertex sets. A digraph G is weighted if each arc is assigned a positive weight. The

weight w(H) of a subdigraph H is the product of the weights on all its arcs.

A (rooted) tree is a subdigraph T of G that is a single connected component and in

which the in-degree of one vertex, the root, is zero, but each of the remaining vertices has

in-degree 1. A (directed) path P is a subdigraph with distinct vertices labeled i1, i2, ..., im
so that its arcs are of the form (ik, ik+1) for k = 1, 2, ...,m− 1; a (directed) cycle C is the

subdigraph obtained from such a path P by adding the arc (im, i1).

If m = 1, the cycle consisting of a single vertex i1 and a single arc (i1, i1) is called a loop.

A unicyclic graph is a subdigraph Q consisting of a collection of disjoint rooted trees

whose roots are the vertices of a directed cycle; notice that the in-degree of every vertex

of such a graph equals 1.

Given a weighted digraph G with n vertices, define the n × n weight matrix A = [aij]
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with entry aij > 0 equal to the weight of arc (j, i) if it exists and 0 otherwise. We denote

such a weighted digraph by (G,A). A digraph G is strongly connected if for any pair

of distinct vertices i,j, there exists a directed path from i to j (and also from j to i).

A weighted digraph (G,A) is strongly connected if and only if the weight matrix A is

irreducible.

To establish global stability properties of the endemic equilibrium, we will use a graph-

theoretic method as presented in [109]. A pair (i, j) is called an arc from vertex i to

vertex j. Given a weighted digraph G(A) with n vertices, the n × n weight matrix A is

defined with aij > 0 equal to the weight of arc (j, i) if it exists, and aij = 0 otherwise.

The Laplacian L of G(A) is defined as

lij =


−aij, i 6= j,

Σk 6=iaik, i = j

Let ci be the cofactor of lij. If G(A) is strongly connected, then ci > 0, for all i = 1, ..., n.

The following combinatorial identities are useful in finding explicit expressions for ci: If

aij > 0 and the out-degree of vertex j satisfies d+(j) = 1, for some i, j, then

ciaij = Σn
k=1cjaik

If aij > 0 and the in-degree of vertex i satisfies d−(i) = 1, for some i, j, then

ciaij = Σn
k=1ckaki

Theorem 1.6. [109] For a given open set E ⊂ Rm, and a function f : E → Rm, consider

the system

x
′ = f(x) (1.4)

and assume that

i. There exist functions Di : E → Rm, Gij : E → R and constants aij > 0 such that

D
′
i|(1.4) ≤ Σn

j=1aijGij(x) with x ∈ E, i = 1, ..., n

ii. Each directed cycle C of G(A) satisfies Σ(s,r)∈S(C)Grs(x) ≤ 0, x ∈ E, where S(C)

denotes the set of all arcs in C. Then, there exist constants ci > 0, i = 1, ..., n (as

defined above), such that the function D(x) = Σn
i=1ciDi(x) satisfies D′ |(1.4)(x) ≤ 0,

that is, D(x) is a Lyapunov function for (1.4).
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1.5 Sensitivity Analysis

Sensitivity analysis is performed to determine the importance of each parameter to the

transmission dynamics of TB disease. The analysis helps to measure the relative change

in a variable when a parameter changes. Such information is very important to study

transmission dynamics of the disease and to optimize control measures of the disease. In

order to decide the most influential parameter among the control measures in the present

model, we will have taken the estimated values of the parameters.

In conducting the sensitivity analysis, we use methods described by [95]. The normalized

forward sensitivity index of a variable to a parameter is the ratio of the relative change

in the variable to the relative change in the parameter. Sensitivity indices allow us to

measure the relative change in a state variable when a parameter changes. The normalized

forward sensitivity index of a variable to a parameter is the ratio of the relative change

in the variable to the relative change in the parameter.

When the variable is a differentiable function of the parameter, the sensitivity index may

be alternatively defined using partial derivatives.

Definition 1.4. [95] The normalized forward sensitivity index of a variable, u, that

depends differentially on a parameter, p, is defined as:

Πu
p = ∂u

∂p
× p

u
(1.5)

In interpreting the sensitivity indices of a variable with respect to a parameter, we first

note that keeping all other factors fixed and determine the magnitude of the sensitivity

indices. The parameter with higher magnitude is/are more influential. The sign of the

sensitivity indices of the variable with respect to the parameters (1.5) show the positive

or negative impact of the parameter on the given variable. That is, if the sign of the

sensitivity indices, (1.5) is positive then the value of the variable increase whenever the

value of the parameter increases and if the sign of the sensitivity indices, (1.5) is negative

then the value of the variable decrease whenever the value of the parameter increase.
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1.6 Research Problem

Ethiopia is one of the 30 high-TB-burden countries, which together account for 90% of

the global TB cases in 2017, Figure 1.3 . Based on WHO estimation for 2014, Ethiopia

had 200,000 incidence (new) TB cases in 2014. This number ranks Ethiopia 10th globally

and 4th in Africa in terms of absolute TB-burden, after Nigeria, South Africa and the

Democratic Republic of Cong. TB kills an estimated 32,000 Ethiopians every year (more

than 80 people per day) [2, 49].

Figure 1.3: List of high TB burden countries [103]

Ethiopia is also ranks 15th among the 30 countries with high burdens of MDR-TB, defined

as TB bacteria resistant to the two most first-line TB drugs, isoniazid and rifampin

[2, 103].

During the period 1998 to 2015, the concept of an HBC became familiar and widely used
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in the context of TB. In 2015, three HBC lists for TB, TB/HIV and MDR-TB were in

use. The HBC list for TB (22 countries) had remained unchanged since 2002, and the

HBC lists for TB/HIV (41 countries) and MDR-TB (27 countries) had not been updated

since 2009 and 2008, respectively.

The 14 countries that are in all three lists are Angola, China, the Democratic Republic of

the Congo, Ethiopia, India, Indonesia, Kenya, Mozambique, Myanmar, Nigeria, Papua

New Guinea, South Africa, Thailand and Zimbabwe. Then from these data we can

observe that the problem is deep rooted in our country Ethiopia (WHO, 2017), figure 1.3

[102, 103].

According to the global report (2017) by WHO, still Ethiopia is one of the 30 high

burden TB countries in the world and one of the countries in Africa with an estimated

incidence of TB at 177 per 100, 000 population in 2016 and 123 per 100,000 population

2009 EC. Another challenge to TB control in Ethiopia is emergence of MDR-TB, with

incidence of MDR TB 5.7 per 100,000 population in 2016 [102, 103]. From the above

information we can understand that the spread of TB is one of the challenges faced by

public health experts in Ethiopia. In addition, there is no as such fruitful research has

done in Ethiopia using Mathematical modeling still know. Thus, we were decided to

conduct an epidemiological research on a two-strain tuberculosis with a mathematical

model analysis.

Thus, this study is based on deterministic mathematical model with interventions inves-

tigations that has raised the following research questions.

(1) Which strains do spread in the society?

(2) Which parameter(s) has(have) higher impact on the spread of either of the two

strain tuberculosis disease?

(3) Which parameters are more influential in the control of either of the two strain

tuberculosis disease?
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1.7 Rationale of the Study

Mathematical modeling of the spread and control of infectious disease has become part of

epidemiology policy decision making in many countries of the world. That is, epidemio-

logical modeling studies of diseases have had an impact on public health policy in various

countries. Thus modeling approaches have become very important for decision making

about infectious disease intervention programs.

Mathematical models have become important tools in analyzing the spread and con-

trol of infectious diseases. As, Tuberculosis (TB) is a chronic infectious disease mainly

caused by Mycobacterium Tuberculosis(MTB), which is affecting one third of the world’s

population, that makes Tuberculosis a global health problem. Many countries including

Ethiopia are trying to eliminate the disease but the emergence of multi-drug resistant

strain also being another challenge as it is difficult but not impossible to treat despite

being too expensive. Ethiopia is one of the high burden TB countries, controlling of the

spread TB gets a series attention [73].

In 2014, 9.6 million incident cases of TB were estimated, of which 1.2 million were new

HIV positive TB cases (12.5% of all TB cases). It is reported that almost three-quarters

(74%) of these cases were from Sub-Saharan Africa. It is estimated that 3.3% of new

TB cases and 20% of previously treated cases have MDR-TB, of which 9.7% MDR-TB

patients have XDR-TB. An estimated 190 000 people have died of MDR-TB in 2014 since

only 50% of MDR-TB cases were successfully treated (WHO, 2015)[102].

In Ethiopia the TB CNR (Case Notification Rate) is exist in each regions that ranges from

88 TB cases per 100,000 populations in Somali region to 368 per 100,000 in Dire Dawa

(see table 1.2). Addis Ababa, Gambella, and Dire Dawa reported TB Case Notification

Rates (CNR) of more than 200/100,000; whereas, Amhara, Oromia, Somali, Benshangul

Gumuz and SNNP regions reported a TB CNR of less than the national Average (123 per

100,000). In 2009 EC, a total of 706 RR/MDR-TB cases are diagnosed and enrolled to

second line anti TB drug; the treatment success rate of MDR TB reached 71.3%; WHO

report ( 2009 EC) table 1.2 [41].
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Table 1.2: Comparison of Baseline and Performance of

TB Case Notification Rate, treatment success rate, cure

rate by Region in Ethiopia ( 2009 EC), WHO report:

S/No. Region TB case TB treatment TB Cure RR/MDR-TB

per 100,000 success rate (%) Rate(%) Patients

1 Tigray 129 91 81 100

2 Afar 173 74 54 16

3 Amhara 108 95 91 121

4 Oromia 122 96 91 178

5 Somalia 88 82 53 5

6 Benshangul Gumuz 109 92 83 0

7 SNNPR 118 94 81 92

8 Gambela 242 78 53 2

9 Harari 194 97 96 9

10 Addis Ababa 233 90 85 139

11 Dire Dawa 368 91 90 43

National 123 94 85 706

Due to the above facts, we were motivated to conduct an epidemiological research on the

two-strain tuberculosis mathematical model analysis in Ethiopia.

1.8 Objective and outline of the thesis

Main Objective of the Study

The main objective of this study is analyzing the spread and control of drug sensitive

and multi-drug resistance tuberculosis in Ethiopia with an epidemiological mathematical

model.
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The Specific Objective of the Study

(1) To examine whether either of the two strains spread in the society or not.

(2) To recognize the most sensitive parameter(s) in the dynamical system of tubercu-

losis.

(3) To identify the most influential parameter that changes the numerical values of

reproduction number.

(4) To suggest the controlling strategies that help to control TB infection.

Outline of the Thesis

In chapter four of this study we formulated a mathematical model with interventions

vaccination, screening and treatment of TB infectious diseases. The positivity and boud-

edness of the considered model were proved. We used a next generation method to explore

the effective reproduction number. We showed the existence of disease free and endemic

equilibrium points. We applied the Routh Hiruwtz criteria, the Gorshigorin disc theorem

to prove the local stability and Laypunov method to prove the global stability of those

equilibrium points.

In chapter five we modified the model in chapter 4 by disaggregating TB bacteria into

drug sensitive and multi drug resistance tuberculosis to obtain a new dynamical system

with interventions vaccination, screening and treatment. Here, also we used a next gen-

eration method to explore the effective reproduction number. We showed the existence

of disease free and endemic equilibrium points. The Routh Hiruwtz criteria, Gorshig-

orin disc theorem and Laypunov method were used to prove the local and/or the global

stability of those equilibrium points.

Chapter six describes the numerical simulation of the dynamical system (4.1)-(4.8) in

chapter 4 by using standard data collected from different sources. The result shows that

the tuberculosis disease not spreads in the community and the rate of vaccine waning is

the most influential parameter to change the effective reproduction number of the first

dynamical system.
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Chapter seven described the numerical simulation of the dynamical system (5.1)-(5.10)

in chapter 5 by using real data collected from different health sectors in Ethiopia. The

numerical value of the effective reproduction number of the DS-TB is 1.03 and the effective

reproduction number of the MDR-TB is 4.78 and the effective reproduction number of

the dynamical system max{1.03, 4.78} = 4.78 . So that MDR strain is spreads strongly

than DS strain. Using sensitive analysis we identify the most influential parameter to

change the behavior of the solution of the considered dynamical system is the number

of effective contacts of susceptible or vaccinated individuals make with an infectious

individual. Finally, chapter 8 provides the results, conclusion and recommendations of

the study.
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Chapter 2

Literature Review

Mathematical models can be used to understand, predict and design effective intervention

programmes to control TB and other epidemics [50]. Mathematical modeling for the

transmission dynamics of TB began in 1962 by Waaler [47, 58, 62, 88, 91]. He divided

the population in to three epidemiological classes: Susceptible, latent and infectious. He

used a particular linear function to model infection rates in the implementation of his

model. Using data from a rural area in South India for the period 1950 to 1955 Waaler

estimated the parameters of his linear model and predicted that the time trend of TB is

unlikely to increase [47].

Brogger, in [78] that improved Waaler’s work, introduced heterogeneity (age) into the

model and also changed the method used to calculate infection rates. He formulated

infection rate as a combination of linear and non-linear infection terms. In the paper the

author compare different control strategies that included finding and treating more cases

and the utilization of vaccination and used prevalence as an indicator of the effectiveness

of control policies. He used data of two WHO/UNICEF projects in Thailand from 1960

to 1963 to estimate the parameters in the model. This model did not formulate clearly

the relationship between infection rate and prevalence.

Other review on mathematical modeling in TB ReVelle was used Brogger and Waaler’s

model to introduce the first nonlinear system of ordinary differential equations that mod-

els TB dynamics [23]. He clearly explained infection rate depends linearly on the preva-
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lence using probabilistic approach. He developed an optimization model and used it to

select control strategies that could be carried out at minimal cost.

In [12, 22, 111] the authors suggest that exogenous reinfection has a drastic effect on the

qualitative dynamics of TB. In the other studies [12, 35, 67] in controlling and spreading of

tuberculosis it is necessary to measure the numerical value of basic reproduction number,

R0, and it should be R0 < 1 to prevent the epidemic. That is decreasing infection rate and

increased the recovery rate through intensive treatment, so that the parameters which

was influenced in tuberculosis spreading model were the infection rate and the recovery

rate parameters. Hence, it would prevent poverty and unproductiveness cases, and gave

government policy which was related to control of spreading tuberculosis.

The current standard for first-line drug-susceptibility testing is an automated liquid cul-

ture system, which requires 4 to 13 days for results. The treatment of multidrug-resistant

tuberculosis is based on expert opinion and requires the creation of combination drug

regimens chosen from five hierarchical groups of first-line and second-line drugs (WHO,

2011). Such therapy is associated with a high risk of intolerance and serious toxic ef-

fects. Since most of the recommended drugs have serious side effects that render treat-

ment particularly difficult, expert consultation is always advised for the treatment of

multidrug-resistant [10, 41, 52].

The study in [12], showed that the incorporation of exogenous reinfection into a two strain

TB model allows the possibility of a subcritical bifurcation at the critical value of the

basic reproductive number R0 = 1, and hence the existence of multiple endemic equilibria

for R0 < 1 and the exogenous reinfection rate larger than a threshold. Thus reducing

R0 to be smaller than one may not be sufficient to eradicate the disease. An additional

reduction in reinfection rate may be required. They also assume that the drug-resistant

strain play a role in the process of exogenous reinfection for the drug- sensitive strain

while the drug- sensitive strain not play a role in the process of exogenous reinfection for

the drug-resistant strain. They compute of the basic reproduction number for the drug-

sensitive strain and for drug- resistant strain. They showed that if exogenous reinfection

forces reach some critical values then a backward bifurcation can happen, creating an

endemic equilibrium when R0 < 1.
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Carlos Castillo-Chavez and Zhilan Feng, in [17] discussed on a two-strain model for TB

and resistant TB with the purpose of determining the role that lack of drug treatment

compliance by TB patient plays on the maintenance of antibiotic resistant strain. They

consider two trains of TB: the regular TB strain and the resistant TB strain. They

considered two latent stages for drug sensitive Tb strain and one latent stage for drug

resistance strain. They assumed that the treatment rate for resistant TB individuals

is very small and can be neglected.They interpreted the average numbers of secondary

infectious cases produced by an ordinary TB strain and one resistant-TB infectious in-

dividual during his or her effective infectious period, respectively. They first studied a

special version of two-strain model with two competing strains of TB. They found that

co-existence is possible but rare while later and noticed that co-existence is almost cer-

tain when the second strain is the result of antibiotic resistance. They had showed that

relatively drastic changes of qualitative behaviors of the disease dynamics occur when

the effect of exogenous reinfection is incorporated into the model. Finally they suggest

that the introduction of exogenous reinfection into the basic TB model allows for the

possibility of a subcritical bifurcation of endemic equilibrium points at the critical value

of the basic reproductive number R0 = 1, and hence the existence of multiple endemic

equilibria for R0 < 1.

In [80], the authors propose a mathematical TB model that includes exogenous reinfec-

tion in the standard SEIL compartmental model is taken as the base model for the TB

transmission dynamics, to gain a better understanding of the recent trend for TB inci-

dence. Their model classifies individuals as the susceptible class (S ), the exposed class(E

), (or high-risk latent, that is, recently exposed but not yet infectious), the active-TB

infectious class (I ), and the low risk latent class or treated infected class (L). They sug-

gested that among some key parameters in the model, the case finding effort turned, (e.g.,

taking the TB medications before occurring active TB) out to be the most significant

impacting component on the reduction in the active TB cases. However, they suggest

that concentrating on treatment alone or case finding alone will not dramatic affect the

reduction in the active TB incidences. Their result shows that taking two or more of the

key parameters at the same time will go a long way in reducing the burden of the active

TB.
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In [5], the researchers modeled the effect of combining Immunization with Latent Tubercu-

losis treatment in controlling the spread of Tuberculosis.They partitioned the population

into five Compartments namely, Immunized M(t), Susceptible S(t), Latently Infected

L(t), Infectious I(t) and Recovered R(t) Compartments. They showed that the admin-

istration of BCG vaccines at birth protects children from early infection of the disease,

but the effect of these vaccines expires with time.

In [57, 67, 70, 71, 74, 97] incorporate the interventions vaccination and treatment and they

evaluated the efficacy of TB control measures, other researchers [63, 72] include either of

the interventions: isolation, quarantine, vaccine and treatment in order to eliminate TB

disease in their models, but they do not consider the waning rate of BCG vaccine and not

include vaccination, screening and treatment interventions all together in the dynamics

of two strain tuberculosis (drug sensitive and multi-drug resistance tuberculosis).

Most reaserchers apply the local and global stability analysis and sensitivity analysis

methods to analyze the properties of their dynamical system. The method of Huwth-

Hirtz criteria was applied in most of the studies [16, 35] to show the local stability of

disease free equilibrium point and endemic eqiulibrium points. The method of Lyapunov

functions is commonly used to establish global stability for mathematical models [9, 19,

21, 28, 35, 46, 67, 66, 77, 93, 99] and Lyapunov functions can construct using graph

theoretic method [56, 109].

Even if researches were conducted on a two strain tuberculosis any one of them was

not consider the inefficacy of the BCG vaccine & waning of immune and; vaccination,

screening and treatment interventions simultaneously to model the dynamics of a two

strain tuberculosis. Another scenario that motivated us to conduct this study was that

there is no as such significant study done in the Ethiopia context.
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Chapter 3

Methodology

3.1 Study Design

In this study we were apply the mixing of quantitative and qualitative research methods

to examine the spread and control of two strain tuberculosis. We have developed com-

partmental models with nonlinear system of ordinary differential equation, and follow

a different approach: the next generation operator approach to compute the effective

reproduction number and basic reproduction number; Routh – Hurwitz criterion and

Gorshigorin disc theorem were applied to proof the local stability of disease free and

endemic equilibrium points receptively. We also used the matrix theoretic method and

graph theoretic method to construct the Lyapunov function to study the global stability

of disease free and endemic equilibrium points respectively. Sensitivity analysis of pa-

rameters were done both qualitatively and quantitatively to recognize the impact of each

parameters in the spread and control of tuberculosis disease. We have been apply the

numerical simulation methods to the associated dynamics to test hypotheses and the-

ory with the real data. This analysis has been presented with illustrations in graphs on

the spread and control of the tuberculosis diseases with the interventions: vaccination,

screening and treatment of infectious.
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3.1.1 Study Population

The study population was comprised both DS-TB and MDR-TB cases who were registered

for TB treatment follow up, individuals got a chance of vaccinated, screened individuals

in hospitals and the sample health centers of the two Administrative cities and the nine

Regional States in Ethiopia in the year 2011 E.C (July, 2018 to June, 2019).

3.1.2 Subject

In order to answer our research question from secondary data sources obtained from

selected hospital, health centers and health posts of individuals based on their TB status.

We have considered all populations in Ethiopia. Publications and statistical reports

from governmental, international, and non-governmental organizations such as the World

Health Organization, Federal Office of Public Health have been referred in an attempt to

quantify the need for recruitment.

Inclusion and Exclusion Criteria:-

All Tuberculosis patients who developed DS-TB or MDR-TB and were treated, individu-

als got a chance of vaccinated, screened individuals in the hospital, clinic, health centers

in the two administrative cities and the nine regional states was includes in our study.

Therefore, all types of TB cases which were treated from July, 2018 to June, 2019 were

included but patients individuals who were treated out of the study period and who were

transfer from one health center to other health center were excluded.

3.1.3 Data Collection Method

In this study, secondary data was collected from already recorded document in the two

administrative cities health bureau and the nine region states health bureau and national

TB control program of Ethiopia, during the study period. The data have been include

the following information: location of residence, history of previous TB treatment (vacci-
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nated, screened and treated before or not), periods of TB treatment, treatment category,

site of involvement and so on. We obtained data from the reports of World Health Orga-

nization (WHO), Federal Democratic Republic Ethiopia Ministry of Health and related

literatures.

We considered that the total population is divided into compartments depending on the

epidemiological status of individuals: Vaccinated, Susceptible, Latently infected of DS-

TB, Screened DS-TB infected, infectious DS-TB, Latently infected of MDR-TB, Screened

MDR-TB infected, MDR-TB infectious and recovered individuals.

The dependent variables are not free from the degree of specialization of physicians;

factor which are a much higher risk of developing TB disease like HIV/AIDS status,

malnutrition or diabetes, or people who use tobacco and the culture, age, sex, etc of the

study.

3.1.4 Measures/ Instruments

We included the following measurments: history of previous TB treatment (vaccinated,

screened and treated before or not), periods of TB treatment, treatment category and so

on.

3.1.5 Procedure

The procedures we followed are: preparation of proposal, writing the fundamental re-

search frame works, construction of assumptions, clarification of parameters, developing

of flow chart and model, formulations of mathematical analysis, incorporating interven-

tions, collecting real data, analyzing the model qualitatively, examining numerical exper-

imentation and reporting the thesis.
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3.1.6 Intervention

We formulated Mathematical model for a two-strain TB disease with interventions. The

control parameters are prevention of susceptible individual from TB per unit time, screen-

ing and treatment of the exposed individuals per unit time and treatment of infectious

individuals per unit time and practiced on a year (from July, 2018 to June, 2019).

3.1.7 Sample Size and Data Analysis

For most studies, especially those of human populations, all the people cannot be studied.

This may be because the population is too large and therefore impossible to study every

person due to time, financial and other resource constraints, or because it cannot be

defined uniquely in either time or space. In such situations only a part of the population,

a sample, would be studied and the results generalized to cover the whole population.

Ethiopia’s population of 107 million lives in its nine regions and its two city adminis-

trations of Addis Ababa and Dire Dawa (Ethiopia population 2018 demographic maps

graphs). There are further divided into 78 zones, 956 woredas (districts), and finally in

to 16, 541 kebeles (neighborhoods). The population is 76% rural, 16% urban and 8%

pastoralist. The operation of the system has been decentralized to regional governments

and district health offices below them. Each district has a primary hospital with multiple

health centers and every health center is administratively linked to five health posts-

the lowest tier of Ethiopia’s health care system. Each neighborhood has its own health

post with two health extension workers (HEWs) who provide a package of up to 16 basic

services to rural populations, including TB prevention and treatment follow-up [73].

In 2009 EC, there are a total of 266 Functional Hospitals, 3622 health centers and 16,

660 health posts in Ethiopia. Thus, we were apply a probability sampling method; first

of all we were divide target population in to clusters by using the nine regional states

and two administrative cities of Ethiopia. These clusters are homogenous among them

but may be heterogeneous based on their culture, sex, age.

Since we know our population size and have been a desired confidence level we can use
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the Automated Method (or the Manual Calculation Method). So, to perform sample

size calculation manually, we need the following values: Population Value (Size of the

population from which the sample be selected), Expected Frequency Value and Worst

Acceptable Frequency value [48].

Numerical simulations have done using real data from ministry of health, Ethiopia. These

numerical analysis have presented with graphs by using soft ware program.
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Chapter 4

Analysis on the Dynamics of

Tuberculosis Mathematical Model

with Interventions

Abstract

In this chapter we considered a nonlinear dynamical system to study the dynamics of

tuberculosis with vaccination, chemoprophylaxis and therapeutics treatments of latent

and active tuberculosis respectively. The total population is divided in to eight compart-

ments. We found that the dynamical system (4.1)-(4.8) has disease free equilibrium point

and endemic equilibrium point. We also found that the effective reproduction number

of the considered dynamical system is Reff = cωs(σψµ+(θ+(1−ψ)µ))
θ+µ

(1−p)α(εγδ+(1−ε)(γ+δ))
(α+µ)(γ+µ)(ρ+µ+d) . We

proved that the disease free equilibrium point is locally and globally stable if Reff < 1

and the endemic equilibrium point is locally stable if Reff > 1 and the number of recov-

ered at the endemic equilibrium, R∗ < Λ(d+µ)
cωκµ

. We also proved that the global stability

of both disease free and endemic equilibrium points using Liapunov method.

38



4.1 Introduction

Tuberculosis or TB (short for Tubercles Bacillus) is an air borne and highly infectious

disease caused by infection with the bacteria mycobacterium tuberculosis [55]. TB pa-

tients are divided into active TB and latent (passive) TB where active TB can transmit

disease. According to the World Health Organization, one-third of the world’s popu-

lation is infected, either latently or actively, with tuberculosis [15, 18]. The disease is

most commonly transmitted from a person suffering from infectious (active) tuberculosis

to other persons by infected droplets created when the person with active TB coughs,

sneeze, sing or speak. The infectious bacilli are inhaled as droplets from the atmosphere.

In the lung the bacteria are phagocytosed by alveolar macrophages and induce a local-

ized proinflammatory response that leads to the recruitment of mononuclear cells from

neighboring blood vessels [28, 51, 70]. Data from a variety of sources suggest that the

life time risk of developing clinically evident TB after being infected is approximately

10%, with 90% likelihood of the infection remaining latent. Individuals who have a la-

tent TB infection are neither clinically ill nor capable of transmitting TB [24, 26, 27]. At

greater ages, the immunity of persons who have been previously infected may wane, and

they may be then at risk of developing active TB as a consequence of either exogenous

reinfection (i.e., acquiring a new infection from another infectious individual) or endoge-

nous reactivation of latent bacilli (i.e., re-activation of a pre-existing dormant infection)

[18, 55, 68, 70]. The general symptoms of TB disease include feelings of sickness or weak-

ness, weight loss, fever, and night sweats. The symptoms of TB disease of the lungs

also include coughing, chest pain, and the coughing up of blood [51, 55, 70]. Diagnosis

relies on radiology (commonly chest X- ray), a tuberculin skin test, blood tests, as well

as microscopic examination and microbiological culture of bodily fluids (such as sputum)

[7, 51, 55].

TB affects all countries and all age groups, but overall the best estimates for 2017 were

that 90% of cases were adults (aged ≥15 years), 64% were male, 9% were people liv-

ing with HIV (72% of them in Africa) and two thirds were in eight countries: India

(27%), China (9%), Indonesia (8%), the Philippines (6%), Pakistan (5%), Nigeria (4%),

Bangladesh (4%) and South Africa (3%). Only 6% of cases were in the WHO European

Region and the WHO Region of the Americas, each of which had 3% of cases, there were
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under 10 new cases per 100 000 population in most high-income countries, 150–400 in

most of the 30 high TB burden countries, and above 500 in a few countries including

Mozambique, the Philippines and South Africa [102]. According to the WHO report,

Ethiopia is one of the 30 high burden TB countries in the world which together account

for 87% of the global TB cases, with an estimated incidence of TB 172,000 individu-

als in 2017. This number ranks Ethiopia 10th globally and 4th in Africa in terms of

absolute TB-burden after Nigeria, South Africa and the Democratic Republic of Congo

of estimated incidence TB 418,000, 322,000 262,000 individuals in 2017 [99]. TB kills

an estimated 32,000 Ethiopians every year (more than 80 people per day)[73, 105]. In

Ethiopia the TB case notification rate is exist in each regions that ranges from 88 TB

cases per 100,000 populations in Somali region to 368 per 100,000 in Dire Dawa. Ad-

dis Ababa, Gambella, and Dire Dawa reported TB case notification rates of more than

200/100,000; whereas, Amhara, Tigray, Oromia, Somali, Benshangul Gumuz and SNNP

regions reported a TB case notification rate of less than the national average (123 per

100,000) in 2017 [44].

Several researchers have continuously researched on how to reduce TB infection using

mathematical models by incorporating control measures such as BCG vaccination, ed-

ucation, screening and treatment [9, 67]. Prevention relies on screening programmes

and vaccination, usually with Bacillus calmette - Guérin (BCG) vaccine given to in-

fants [7, 18, 55]. The main health-care interventions to prevent new infections of My-

cobacterium tuberculosis and their progression to TB disease are treatment of latent TB

infection and vaccination of children with the bacille Calmette-Guérin (BCG) vaccine.

Meanwhile, for early prevention carried out immunization with BCG vaccine. This vac-

cine will be effective if given to the baby immediately after birth or at least 2 months after

birth (with the note during which the baby is not in contact with active TB patients).

TB preventive treatment for a latent TB infection is expanding, but most of those for

whom it is strongly recommended are not yet accessing care, whereas coverage of BCG

vaccination is high. WHO has strongly recommended treatment for latent TB infection

in two priority groups: people living with HIV, and children aged less than 5 years who

are household contacts of someone who has bacteriologically confirmed pulmonary TB

[102].
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A TB vaccine has been available for many decades. The effectiveness BCG vaccine

in preventing TB is controversial (Salyers 1994). Results of field trials of the vaccine

have differed widely, some indicating protection rates as high as 705% to 80%, others

indicating the vaccine was completely ineffective in preventing TB (Salyers 1994) [18].

Some researchers also demonstrated efficacy ranging from no protection to 80% protec-

tion though a meta-analysis estimated that the overall efficacy of BCG is 50%, but this

conclusion is controversial as the set of trials shows heterogeneity of efficacy (Colditz et

al. 1994). Even in populations where BCG appears to be efficacious, there are very few

data available on the effect of BCG after fifteen years. [71, 92].

Mainly control of tuberculosis is managed by two types of treatment. The treatment

of latent TB is called chemoprophylaxis and treatment of active TB is called therapeu-

tics. Treatment of TB lasts long; therefore control strategies have been developed for

compliance to TB treatment. DOTS (Directly Observed Treatment, Short-Course) are

a treatment program used for compliance with treatment of drug-sensitive TB. Another

control program is DOTS-plus, which is developed for compliance with treatment of

drug-resistant TB. A good public health treatment strategy combines different control

strategies to control all types of TB infections [9, 15, 32, 55, 77].

Epidemiology is the science of public health. It studies the distribution and determinants

of disease status or events in populations, with the aim of controlling public health

problems. The study of epidemiology ranges from cluster investigation at the individual

level to building mathematical models to simulate disease dynamics at the population

level [15].

Mathematical models are important tools in analysing the spread and control of infectious

diseases. This started as far back as 1760 when Daniel Bernoulli developed a model for

smallpox [21, 51]. Many mathematical models have been developed for many infectious

diseases including tuberculosis. Long-term effects of tuberculosis can be examined using

epidemiological models. Epidemiological models consist of compartments which represent

sets of individuals grouped by disease status. The links between compartments represent

transitions from one state of disease to another state. The future of an epidemic can be

estimated by finding the basic reproductive number of the model [15].The dynamics of

TB are complex due to a combination of various factors of societal order such as social
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and environmental factors, malnutrition, heavy alcohol drinking, smoking, HIV, diabetes

mellitus [9]. Human Immunodeficiency Virus (HIV) is a major contributing factor for

developing active TB. HIV infected individuals had 3.5-fold higher risk of tuberculosis

than HIV negative individuals. Ethiopia is also among high TB/HIV burden countries

with over 10% TB/HIV co-infection rate. Among people living with HIV, laboratory

diagnosis of TB is more difficult compared to HIV negative, and mortality rates are

higher [25, 44].

The Lyapunov functions used in this paper to demonstrate the stability of the endemic

equilibria are of the same form as those used recently in [9, 19, 21, 28, 46, 66, 67, 77, 93, 99]

to determine the global dynamics of their models. Global stability of epidemic models is

always mathematically challenging [9]. The difficulty is to choose the coefficients of the

Lyapunov function and to prove that its time derivative is non-positive.

In the first section 4.2 this chapter we set the model assumption, draw the flow chart of

the model, develop the corresponding dynamical system . In section 4.3 we computed

effective reproduction number, analyzed the existence of equilibrium points and proved

their local and global stability. At the end in section 4.4 we gave the conclusion for the

work.

4.2 The Mathematical Model

We introduce a deterministic tuberculosis model. The total population N(t) is divided

in to eight disjoint classes depending on the epidemiological status of individuals: Sus-

ceptible S(t), who have never exposed to the Mycobacterium tuberculosis; Vaccinated

V (t), individuals who are vaccinated against mycobacterium tuberculosis; we assumed

that persons with latent tuberculosis infection are considered at high risk of developing

active tuberculosis during the first 2 years of infection, during which approximately 5% of

those persons develop active tuberculosis and the likelihood of developing active disease

after infection decreases with the age of the infection. Thus, we divide them in to two

stages depending on the duration of time they spent after primary infection: An early

stage with high risk of developing active tuberculosis Hr(t) (in the first two years after
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primary infection) and Later(Long) stage with low risk of developing active disease Lr(t)

(More than two years after primary infection but not transformed to active tuberculosis),

individuals who screened and treating at early latent stage tuberculosis T (t), Infectious

individuals with tuberculosis I(t) that are not yet in treatment, treating infectious IT (t)

and Recovered individuals R(t).

4.2.1 Model Assumptions

We assumed that the Population is closed which means the increase or decrease of popu-

lation is only caused by birth and death, while the increase and reduction caused by other

factors is ignored. That is, there are no immigrants and emigrants. The only way of entry

into the population is through new – born babies and the only way of exit is through

death from natural causes or death from tuberculosis-related causes. Death caused by

factors other than tuberculosis infection is considered a natural death. Population is

homogeneous. All newborns are previously uninfected by tuberculosis and therefore join

either the vaccinated compartment or the susceptible compartment depending on whether

they are vaccinated or not. The immunity conferred on individuals by vaccination expires

after some time at a given rate. Infected individuals are divided into two groups: latent

infected and active infected. The individual active infected can transmit tuberculosis dis-

ease. Latently Infected individuals are divided into two sub groups: early latent infected

(high risk to develop active tuberculosis) and long (low risk to develop active tuberculosis)

latent infected. All susceptible individuals are equally likely to be infected by infectious

individuals in case of contact. Individuals in each compartment have equal natural death

rate. Individuals on recovered classes will return to be individuals on infected classes.

That the population size in a compartment is differentiable with respect to time and that

the epidemic process is deterministic. Vaccine is given to new born populations.

We assumed that individuals are recruited into the population by a constant rate Λ with

the proportions ψ of which are vaccinated to protect them against tuberculosis infection

and the remaining proportion are susceptible. All susceptible individuals are equally

likely to be infected by infectious individuals in case of contact. Furthermore, the vaccine

has a waning effect over time (after a time 1
θ

vaccinated individuals become susceptible).

Susceptible population increases due to the coming in of new births not vaccinated against
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the infection and those who were vaccinated but lose their immunity. We assume that

vaccinated individuals may infect with the rate of ineffecancy of BCG vaccine σ ∈ [0, 1].

When some susceptible and vaccinated individuals come into contact with infectious in-

dividuals, they get infected and progress to latently infected classes at a force of infection

rate λ and σλ respectively where λ = cω I
N

and ω is the probability that an individual is

infected by one infectious individual, and c is the percapita contact rate.

The proportion p of class Hr have got a chance of screened and treatment while the

remaining proportion (1 − p) of the high risk latently tuberculosis infected individuals

may not have opportunity for treatment. The proportion ε and (1−ε) of individuals of the

early latent/exposed individuals for tuberculosis who do not get chance for screened will

go to Lr and I respectively at the rate α. Thus, the proportion p, ε(1−p) and (1−ε)(1−p)

of individuals in the class Hr is transferred to classes T , Lr and I respectively at a rate

α. Individual leaves class Lr at the rate γ in which, the proportion δ goes to class I

and; the remaining proportion (1− δ) recovers naturally and enter to recovered class R.

The proportion q of individuals in class I goes for treatment in IT and the remaining

proportion (1− q) enters to class R at the rate ρ. Individuals leave the screened class T

and treating class IT at the rates φ, and ϕ respectively, and go to recovered class, where

φ > ϕ.

Individuals in the recovered class are temporarily recovered. Soon they revert back to the

latently infected classes Hr after been re-infected by tuberculosis at the rate κλ , where

κ is the reduction in susceptibility due to prior endogenous infection of tuberculosis. We

assume that each class conforms to natural death at the rate µ while infectious individuals

in I are die due to tuberculosis diseases at the rate d.

Based on the above assumptions we do have the following flow chart: With the above

assumptions and relations between different compartments the dynamics of tuberculosis
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Figure 4.1: Flow chart of dynamical system (4.1)-(4.8) of a tuberculosis model

model can be ruled by the following nonlinear ordinary differential equations.

dV

dt
= ψΛ− (σλ+ θ + µ)V (4.1)

dS

dt
= (1− ψ)Λ + θV − (λ+ µ)S (4.2)

dHr

dt
= λ(σV + S + κR)− (α + µ)Hr (4.3)

dLr
dt

= εα(1− p)Hr − (γ + µ)Lr (4.4)
dT

dt
= αpHr − (φ+ µ)T (4.5)

dI

dt
= δγLr + α(1− ε)(1− p)Hr − (ρ+ µ+ d)I (4.6)

dIT
dt

= qρI − (ϕ+ µ)IT (4.7)
dR

dt
= (1− q)ρI + γ(1− δ)Lr + φT + ϕIT − (κλ+ µ)R (4.8)

With the total population at a given time t is

N(t) = S(t) + V (t) +Hr(t) + Lr(t) + I(t) + T (t) + IT (t) +R(t)

Table 4.1: Symbols and their description for state vari-

ables and parameters in the dynamical system (4.1)-(4.8)

Symbols Description

S(t) Susceptible individuals who are at risk of being infected by tuberculosis at

time t
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V(t) Vaccinated individuals against tuberculosis at time t.

Hr(t) Early latently(High risk) infected individuals at time t.

Lr(t) Long latently(Low risk) infected individuals at time t.

T(t) Screened and treating individuals at time t.

I(t) Individuals who are infectious at time t.

IT (t) Infectious individuals who start therapy

R Individuals Recovered against tuberculosis at time t.

Λ Recruitment of the population

ψ Proportions new born vaccinated

µ Natural death rate

σ The rate of inefficacy of vaccine

θ The rate of vaccine waning

λ Force of infection

ω Probability of acquiring tuberculosis infections one infectious individual

c Number of effective contacts susceptible individuals makes with infectious

individuals per year

α The rate of progression of individuals from early latently infected

d Death rate due to the TB disease

p Proportion of early latently infected individuals who go for treatment

γ Progression rate from Long latently infected tuberculosis.

δ The portion of Lr enter in to I

ε Proportion of individuals who do not get chance for screened at Hr and will

go to Lr class

ρ The rate at which individuals leave infectious class

q Proportion of infectious individuals who go for treatment

φ The rate of chemoprophylaxis treatment of early latent tuberculosis

ϕ The rate of therapeutic of treatment active tuberculosis individuals in IT

κ Acquired immunity due to previous treatment
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4.3 Basic Properties of the Model

4.3.1 Positivity of Solutions of the Dynamical System

For the human population model to be epidemiologically meaningful it should be that all

solution of the model with positive initial value remains positive for all time t0. Therefore,

we have been discussed under which the model being studied has non-negative solutions.

The derivative of a function at a point is one property that shows the behaviour of that

function. It is known that if the derivative at a point is positive, then the function is

increasing there, if it is negative, then the function is decreasing and if it is zero, then

function is constant. Thus, we show the positivity of the solution for the given dynamical

system.

Theorem 4.1. Let the initial value for the model is V (0) > 0, S(0) > 0, Hr(0) >

0, Lr(0) > 0, I(0) > 0, T (0) > 0, IT (0) > 0 and R(0) > 0 . Then, the solutions

V (t), S(t), Hr(t), Lr(t), I(t),

T (t), IT (t) and R(t) of the dynamical system (4.1)-(4.8) will be remain positive for all

time t > 0.

Proof. Let t̄ = sup{t > 0 : S(t) > 0, V (t) > 0, S(t), Hr(t) > 0, Lr(t) > 0, I(t) > 0, T (t) >

0, IT (t) > 0 and R(t) > 0} ∈ [0, t] and by considering the eight ordinary differential

equations we do have:

From the equation (4.1) we have: dV
dt

= ψΛ− (σλ+ θ + µ)V

We can be rewrite as: dV
dt

+ (σλ+ θ + µ)V = ψΛ

Multiply both sides by e[
∫ t̄

0 (θ+µ+σλ(v))dv] = e[θt̄+µt̄+
∫ t̄

0 λ(v)dv]

⇔ dV

dt
e[θt̄+µt̄+

∫ t̄

0 λ(v)dv] + (σλ(t) + θ + µ)V (t)e[θt̄+µt̄+
∫ t̄

0 λ(v)dv] = ψΛe[θt̄+µt̄+
∫ t̄

0 λ(v)dv]

⇔ d

dt
[V (t)e[θt̄+µt̄+

∫ t̄

0 λ(v)dv] − V (0) =
∫ t̄

0
ψΛe[θt̄+µt̄+

∫ t̄

0 λ(v)dv]dt

Therefore, V (t̄)e[θt̄+µt̄+
∫ t̄

0 λ(v)dv] − V (0) =
∫ t̄

0 ψΛe{θt̄+µt̄+
∫ w

0 (λ(v))dv}dt

Then, V (t̄) = V (0)MV +MV

∫ t̄
0 ψΛe{θt̄+µt̄+

∫ w

0 (λ(v))dv}dw > 0

Where MV = exp− θt̄+ µt̄+
∫ t̄

0 λ(v)dv > 0

From the equation (4.2) we have: dS
dt

= (1− ψ)Λ + θV − (λ+ µ)S
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We can be rewrite as: dS
dt

+ (λ+ µ)S = (1− ψ)Λ + θV

Multiply both sides by e[
∫ t̄

0 (µ+λ(v))dv] = e[µt+
∫ t̄

0 λ(v)dv]

⇔ dS

dt
e[µt+

∫ t̄

0 λ(v)dv] + (λ(t) + µ)S(t)e[µt+
∫ t̄

0 λ(v)dv] = [(1− ψ)Λ + θV ]e[µt+
∫ t̄

0 λ(v)dv]

⇔ d

dt
[S(t)e{µt+

∫ t̄

0 λ(v)dv}]− S(0) =
∫ t̄

0
((1− ψ)Λ + θV (t))e{µt+

∫ w

0 (λ(v))dv}dt

Therefore, S(t̄)e{µt̄}+
∫ t̄

0 λ(v)dv − S(0) =
∫ t̄

0((1− ψ)Λ + θV (t))e{µt+
∫ w

0 (λ(v))dv}dt

Then, S(t̄) = S(0)MS +MS

∫ t̄
0((1− ψ)Λ + θV (t))e{µt+

∫ w

0 (λ(v))dv}dw > 0

Where MS = e−{µt+
∫ t̄

0 λ(v)dv} > 0

From the equation (4.3) we have: dHr

dt
= λ(S + σV + κR)− (α + µ)Hr

We can be rewrite as: dHr

dt
+ (α + µ)Hr = λ(S + σV + κR)

Multiply both sides by e[
∫ t̄

0 (α+µ)dv] = e[αt̄+µt̄]

⇔ dHr

dt
e[αt̄+µt̄] + (α + µ)Hre

[αt̄+µt̄] = λ(S + σV + κR)e[αt̄+µt̄]

⇔ d

dt
Hr(t)e[αt̄+µt̄] −Hr(0) =

∫ t̄

0
λ(t)(S(t) + σV (t) + κR(t))e[αt̄+µt̄]dt

Therefore, Hr(t̄)e[αt̄+µt̄] −Hr(0) =
∫ t̄

0 λ(t)(S(t) + σV (t) + κR(t))e[αt̄+µt̄]dt

Then, Hr(t̄) = Hr(0)MH +MH

∫ t̄
0 λ(t)(S(t) + σV (t) + κR(t))e[αt̄+µt̄]dw > 0

Where MH = e−[αt̄+µt̄] > 0

From the equation (4.4) we have: dLr

dt
= αε(1− p)Hr − (γ + µ)Lr

We can be rewrite as: Lr

dt
+ (γ + µ)Lr = αε(1− p)Hr

Multiply both sides by e[
∫ t̄

0 (γ+µ)dv] = e[γt̄+µt̄]

⇔ Lr
dt
e[γt̄+µt̄] + (γ + µ)Lre[γt̄+µt̄] = αε(1− p)Hre

[γt̄+ µt̄]

⇔ d

dt
[Lr(t)e[γt̄+µt̄]]− Lr(0) =

∫ t̄

0
αε(1− p)Hre

[γt̄+µt̄]dt

Therefore, Lr(t̄)e[γt̄+µt̄] − Lr(0) =
∫ t̄

0 αε(1− p)Hre
[γt̄+µt̄]dt

Then,Lr(t̄) = Lr(0)ML +ML

∫ t̄
0 αε(1− p)Hre

[γt̄+µt̄]dw > 0, Where ML = e−[γt̄+µt̄] > 0

From the equation (4.5) we have: dT
dt

= αpHr − (φ+ µ)T

We can be rewrite as: dT
dt

+ (φ+ µ)T = αpHr

Multiply both sides by e[
∫ t̄

0 (φ+µ)dv] = e[φt̄+µt̄]

⇔ dT

dt
e[φt̄+µt̄] + (φ+ µ)Te[φt̄+µt̄] = αpHre

[φt̄+µt̄]

⇔ d

dt
[T (t)e[φt̄+µt̄]]− T (0) =

∫ t̄

0
αpHre

[φt̄+µt̄]dt
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Therefore, T (t̄)e[φt̄+µt̄] − T (0) =
∫ t̄

0 αpHre
[φt̄+µt̄]dt

Then, T (t̄) = T (0)MT +MT

∫ t̄
0 αpHre

[φt̄+µt̄]dt > 0, Where MT = e−[φt̄+µt̄] > 0

From the equation (4.6) we have: dI
dt

= δγLr + α(1− ε)(1− p)Hr − (ρ+ µ+ d)I

We can be rewrite as: dI
dt

+ (ρ+ µ+ d)I = δγLr + α(1− ε)(1− p)Hr

Multiply both sides by e[
∫ t̄

0 (ρ+µ+d)dv] = e[ρt̄+dt̄+µt̄]

⇔ dI

dt
e[ρt̄+dt̄+µt̄] + (ρ+ µ+ d)Ite[ρt̄+dt̄+µt̄] = [δγLr + α(1− ε)(1− p)Hr]e[ρt̄+dt̄+µt̄]

⇔ d

dt
[I(t)e[ρt̄+dt̄+µt̄]]− I(0) = [δγLr + α(1− ε)(1− p)Hr]e[ρt̄+dt̄+µt̄]

Therefore, I(t̄)e[ρt̄+dt̄+µt̄] − I(0) =
∫ t̄
0 [δγLr + α(1− ε)(1− p)Hr]e[ρt̄+dt̄+µt̄]dt

Then, I(t̄) = I(0)MI +MI

∫ t̄
0 [δγLr + α(1− ε)(1− p)Hr]e[ρt̄+dt̄+µt̄]dt > 0

Where MI = e−[ρt̄+dt̄+µt̄] > 0

From the equation (4.7) we have dIT

dt
= qρI − (ϕ+ µ)IT

We can be rewrite as: dIT

dt
+ (ϕ+ µ)IT = qρI

Multiply both sides by e[
∫ t̄

0 (ϕ+µ)dv] = e[ϕt̄+µt̄]

⇔ dIT
dt

e[ϕt̄+ µt̄] + (ϕ+ µ)IT e[ϕt̄+µt̄] = qρI(t)e[ϕt̄+µt̄]

⇔ d

dt
[IT (t)e[ϕt̄+µt̄]] − IT (0) =

∫ t̄

0
qρI(t)e[ϕt̄+µt̄]dt

Therefore, IT (t̄)e[ϕt̄+µt̄] − IT (0) =
∫ t̄

0 qρI(t)e[ϕt̄+µt̄]dt

Then, IT (t̄) = IT (0)MIT
+MIT

∫ t̄
0 qρI(t)e[ϕt̄+µt̄]dt > 0, where MIT

= e−[ϕt̄+µt̄] > 0

From the equation (4.8) we have: dR
dt

= φT + (1− q)ρI + ϕIT + (1− δ)γLr − (κλ+ µ)R

We can be rewrite as: dR
dt

+ (κλ+ µ)R = φT + (1− q)ρI + ϕIT + (1− δ)γLr
Multiply both sides by e[

∫ t̄

0 (µ+λ(v))dv] = e[µt̄+
∫ t̄

0 λ(v)dv]

⇔ dR

dt
e[µt̄+

∫ t̄

0 λ(v)dv] + (λ(t) + µ)R(t)e[µt̄+
∫ t̄

0 λ(v)dv]

= [T + (1− q)ρI + ϕIT + (1− δ)γLr]e[µt̄+
∫ t̄

0 λ(v)dv]

⇔ d

dt
[R(t)e[µt̄+

∫ t̄

0 λ(v)dv] −R(0) =
∫ t̄

0
[T + (1− q)ρI + ϕIT + (1δ)γLr]e[µt̄+

∫ t̄

0 λ(v)dv]dt

Therefore, R(t̄)e{[µt̄+
∫ t̄

0 λ(v)dv]}−R(0) =
∫ t̄

0 [T +(1− q)ρI+ϕIT +(1− δ)γLr]e[µt̄+
∫ t̄

0 λ(v)dv]dt

Then, R(t̄) = R(0)MR +MR

∫ t̄
0 [T + (1− q)ρI + ϕIT + (1− δ)γLr]e[µt̄+

∫ t̄

0 λ(v)dv]dw > 0

Where MR = e−[µt̄+
∫ t̄

0 λ(v)dv] > 0

Therefore all of the state variables of our model system (4.1)-(4.8) are positive for all

t > 0 given any positive initial conditions.

49



4.3.2 Boundedness of Solutions of the Dynamical System

Theorem 4.2. The closed set Ω = {(V, S,Hr, Lr, T, I, IT , R) ∈ R8
+ : N ≤ Λ

µ
} is positively

invariant and attracts all positive solutions of the dynamical system (4.1) – (4.8).

Proof. Consider the biologically feasible region, Ω and observe that the rate of change

of the total population obtained by adding all the equations of the model (4.1)-(4.8) is

given by dN
dt

= Λ − µN − dI ≤ Λ − µN . It follows that dN
dt

< 0 whenever N > Λ
µ

.

Furthermore, since dN
dt

= Λ−µN ; Now using a standard comparison theorem we do have∫ dN
(Λ−µN) ≤

∫
dt. Integrating both sides gives Λ − µN ≥ Ae−µt , where A = e−cµ it is a

constant. By using initial condition N(0) we do have Λ−µN(0) ≥ A or N(0) ≤ Λ
µ
−A

µ
≤ Λ

µ

and N(t) ≤ N(0)e−µt + Λ
µ

(1− e−µt).

Thus limt→∞N(t) ≤ N(0)e−µt+Λ
µ

(1−e−µt), which implies that limt→∞N(t) ≤ N(0)e−µt−
Λ
µ
e−µt + Λ

µ
≤ Λ

µ
since N(0) ≤ Λ

µ
. Hence as t → inf the population size N(t) → Λ

µ
which

implies that 0 ≤ N(t) ≤ Λ
µ

.Therefore, all feasible solutions of the dynamical system (4.1)

- (4.8) with initial conditions in Ω = {(V, S,Hr, Lr, T, I, IT , R) ∈ R8
+ : N ≤ Λ

µ
} do remain

in Ω for all t > 0. That is, the set Ω is positively invariant and attracting.

From the equation (4.1) we have: dV
dt

= ψΛ− (σλ+ θ + µ)V

If we add σλV to the right side, we get: dV
dt
≤ ψΛ− (θ + µ)V

Using a standard comparision theorem:
∫ dV

(ψΛ−(θ+µ)V ) ≤
∫
dt ⇔ − 1

(θ+µ) ln(ψΛ − (θ +

µ)V ) ≤ t+ c, where c is a constant

⇔ψΛ− (θ + µ)V ≥ Be−(θ+µ)t, where B = e−c(θ+µ) is a constant

⇔V ≤ ψΛ
(θ + µ) −

B

(θ + µ)e
−(θ+µ)t

By applying the initial condition V (0):

ψΛ− (θ + µ)V ≥ Be−(θ+µ)t,⇔ V (0) ≤ ψΛ
(θ + µ) −

B

(θ +mu) ≤
ψΛ

(θ + µ) ,

Then from the inequality ψΛ− (θ+ µ)V ≥ Be−(θ+µ)t, and taking B = ψΛ− (θ+ µ)V (0)

we can get,
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V (t) ≤ ψΛ
(θ + µ) −

B

(θ + µ)e
−(θ+µ)t ≤ ψΛ

(θ + µ) − ( ψΛ
(θ +mu) − V (0))e−(θ+µ)t)

V (t) ≤ V (0)e−(θ+µ)t + ψΛ
(θ +mu)(1− e−(θ+mu)t)

V (t) ≤ V (0)e−(θ+mu)t + ψΛ
(θ +mu)(1− e−(θ+mu)t)

limt→∞V (t) ≤ V (0)e−(θ+mu)t + ψΛ
(θ +mu)(1− e−(θ+mu)t)

limt→∞V (t) ≤ (V (0)− ψΛ
(θ +mu)e

−(θ+mu)t + ψΛ
(θ +mu)

≤ ψΛ
(θ +mu)(Since, V (0) ≤ ψΛ

(θ +mu))

From the equation (4.2), we have: dS
dt

= (1− ψ)Λ + θV − (λ+ µ)S

If we add λS to the right side, we get: dS
dt
≤ (1− ψ)Λ + θV − µS

Using a standard comparision theorem:
∫ dS

(1−ψ)Λ+θV−µS ≤
∫
dt

⇔− 1
µ
ln((1− ψ)Λ + θV − µS) ≤ t+ c, where c is a constant

⇔(1− ψ)Λ + θV − µS ≥ Ce−µt, where C = e−cµt is a constant

⇔S ≤ (1− ψ)λ+ θV

µ
− C

µ
e−µt

By applying the initial condition S(0):

S(t) ≤ (1− ψ)Λ + θV

µ
− C

µ
e−µt,⇔ S(0) ≤ (1− ψ)Λ + θV

µ
− C

µ
≤ (1− ψ)Λ + θV

µ
,

Then from the inequality (1−ψ)Λ + θV −µS ≥ Ce−µt, and taking C = (1−ψ)Λ + θV −

µS(0) we can get,

S(t) ≤ (1− ψ)Λ + θV

µ
− C

µ
e−µt ≤ (1− ψ)Λ + θV

µ
−
(

(1− ψ)Λ + θV

µ
− S(0)

)
e−µt

S(t) ≤ S(0)e−µt + (1− ψ)Λ + θV (1− e−µt)

S(t) ≤ S(0)e−µt + (1− ψ)Λ + θV (1− e−µt)

limt→∞S(t) ≤ S(0)e−µt + ((1− ψ)Λ + θV (1− e−µt)

limt→∞S(t) ≤ (S(0)− (1− ψ)Λ + θV e−µt + (1− ψ)Λ + θV ≤ (1− ψ)Λ + θV.

Since,S(0) ≤ (1− ψ)Λ + θV )
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From equation (4.3), we have: Hr

dt
= λ(S + σV + κR)− (α + µ)Hr

If we add αHr to the right side, we get: dHr

dt
≤ λ(S + σV + κR)− µHr

Using a standard comparision theorem:
∫ dHr

(S+σV+κR)−µHr
≤
∫
dt

⇒− 1
µ
ln((S + σV + κR)− µHr) ≤ t+ c, where c is a constant.

⇒(S + σV + κR)− µHr ≥ De−µt, where D = e−cµtis a constant

⇒Hr ≤
(S + σV + κR)

µ
− D

µ
e−µt

By applying the initial condition Hr(0):

Hr(t) ≤ (S+σV+κR)
µ

− D
µ
e−µt ,⇒ Hr(0) ≤ (S+σV+κR)

µ
− D

µ
≤ (S+σV+κR)

µ
,

Then from the inequality (S + σV + κR) − µHr ≥ De−µt, and taking D = (S + σV +

κR)− µHr(0) we can get,

Hr(t) ≤
(S + σV + κR)

µ
− D

µ
e−µt ≤ (S + σV + κR)

µ
−
(

(S + σV + κR)
µ

−Hr(0)
)
e−µt

Hr(t) ≤ Hr(0)e−µt + (S + σV + κR)
µ

(1− e−µt)

Hr(t) ≤ Hr(0)e−µt + (S + σV + κR)
µ

(1− e−µt)

limt→∞Hr(t) ≤ Hr(0)e−µt + (S + σV + κR)
µ

(1− e−µt)

limt→∞Hr(t) ≤ (Hr(0)− (S + σV + κR)
µ

e−µt + (S + σV + κR)
µ

≤ (S + σV + κR)
µ

.

(Since, Hr(0) ≤ (S+σV+κR)
µ

)

From the equation (4.4), we have: dLr

dt
= αε(1− p)Hr − (γ + µ)Lr

If we add γLr to the right side, we get: dLr

dt
≤ αε(1− p)Hr − µLr

By a standard comparision theorem, we get:
∫ dLr

αε(1−p)Hr−µLr
≤
∫
dt

⇒− 1
µ
ln(αε(1− p)Hr − µLr) ≤ t+ c, where c is a constant

⇒αε(1− p)Hr − µLr ≥ Ee−µt, where E = e−cµtis a constant

⇒Lr ≤
αε(1− p)Hr

µ
− E

µ
e−µt

By applying the initial condition Lr(0):

Lr(t) ≤ αε(1−p)Hr

µ
− E

µ
e−µt,⇒ Lr(0) ≤ αε(1−p)Hr

µ
− E

µ
≤ αε(1−p)Hr

µ
,

Then from the inequality αε(1−p)Hr−µLr ≥ Ee−µt, and taking E = αε(1−p)Hr−µLr(0)
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we can get,

Lr(t) ≤
αε(1− p)Hr

µ
− E

E
e−µt ≤ αε(1− p)Hr

µ
−
(
αε(1− p)Hr

µ
− Lr(0)

)
e−µt

Lr(t) ≤ Lr(0)e−µt + αε(1− p)Hr

µ
(1− e−µt)

Lr(t) ≤ Lr(0)e−µt + αε(1− p)Hr

µ
(1− e−µt)

limt→∞Lr(t) ≤ Lr(0)e−µt + αε(1− p)Hr

µ
(1− e−µt)

limt→∞Lr(t) ≤ Lr(0)− αε(1− p)Hr

µ
e−µt + αε(1− p)Hr

µ
≤ αε(1− p)Hr

µ
.

Since, Lr(0) ≤ αε(1−p)Hr

µ

From the equation (4.5), we have: dT
dt

= αpHr − (φ+ µ)T

If we add φT to the right side, we get: dT
dt
≤ αpHr − µT

By a standard comparision theorem, we get:
∫ dT
αpHr−µT ≤

∫
dt

⇒− 1
µ
ln(λpHr − µT ) ≤ t+ c, where c is a constant

⇒αpHr − µT ≥ Fe−µt,where F = e−cµtis a constant

⇒T ≤ αpHr

µ
− F

µ
e−µt

By applying the initial condition T (0):

T (t) ≤ αpHr

µ
e−µt,⇒ T (0) ≤ αpHr

µ
− F

µ
≤ αpHr

µ
,

Then from the inequality αpHr − µT ≥ Fe−µt , and taking F = αpHr − µT (0) we can

get,

T (t) ≤ αpHr

µ
− F

µ
e−µt ≤ αpHr

µ
−
(
αpHr

µ
− T (0)

)
e−µt

T (t) ≤ T (0)e−µt + αpHr

µ
(1− e−µt)

T (t) ≤ T (0)e−µt + αpHr

µ
(1− e−µt)

limt→∞T (t) ≤ T (0)e−µt + αpHr

µ
(1− e−µt)

limt→∞T (t) ≤
(
T (0)− αpHr

µ

)
e−µt + αpHr

µ
≤ αpHr

µ
.

(Since, T (0) ≤ αpHr

µ
)

From the equation (4.6), we have: dI
dt

= δγLr + α(1− ε)(1− p)Hr − (ρ+ µ+ d)I

If we add (ρ+ d)I to the right side, we get: dI
dt
≤ δγLr + α(1− ε)(1− p)Hr − µI
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By a standard comparision theorem, we get:
∫ dI
δγLr+α(1−ε)(1−p)Hr−µI ≤

∫
dt

⇒− 1
µ
ln(δγLr + α(1− ε)(1− p)Hr − µI) ≤ t+ c, where c is a constant

⇒δγLr + α(1− ε)(1− p)Hr − µI ≥ Ge−µt, , where G = e−cµt is a constant

⇒ I ≤ δγLr + α(1− ε)(1− p)Hr

µ
− G

µ
e−µt

By applying the initial condition I(0) we have : I(t) ≤ δγLr+α(1−ε)(1−p)Hr

µ
− G

µ
e−µt ,

⇒ I(0) ≤ δγLr + α(1− ε)(1− p)Hr

µ
− G

µ
≤ δγLr + α(1− ε)(1− p)Hr

µ
,

Then from the inequality δγLr + α(1 − ε)(1 − p)Hr − µI ≥ Ge−µt , and taking G =

δγLr + α(1− ε)(1− p)Hr − µI(0) we can get,

I(t) ≤ δγLr + α(1− ε)(1− p)Hr

µ
− G

µ
e−µt

≤ δγLr + α(1− ε)(1− p)Hr

µ
−
(
δγLr + α(1− ε)(1− p)Hr

µ
− I(0)

)
e−µt

I(t) ≤ I(0)e−µt + δγLr + α(1− ε)(1− p)Hr

µ
(1− e−µt)

I(t) ≤ I(0)e−µt + δγLr + α(1− ε)(1− p)Hr

µ
(1− e−µt)

limt→∞I(t) ≤ I(0)e−µt + δγLr + α(1− ε)(1− p)Hr

µ
(1− e−µt)

limt→∞I(t) ≤ (I(0)− δγLr + α(1− ε)(1− p)Hr

µ
e−µt + δγLr + α(1− ε)(1− p)Hr

µ

≤ δγLr + α(1− ε)(1− p)Hr

µ
.(Since,I(0) ≤ δγLr + α(1− ε)(1− p)Hr

µ
)

From the equation (4.7), we have: dIT

dt
= qρI − (ϕ+ µ)IT

If we add ϕIT to the right side, we get: dIT

dt
≤ qρI − µIT

By a standard comparision theorem, we get:
∫ dIT

qρI−µIT
≤
∫
dt

⇒− 1
µ
ln(qρI − µIT ) ≤ t+ c where c is a constant

⇒qρI − µIT ≥ He−µt,where H = e−cµtis a constant

⇒IT ≤
qρI

µ
− H

µ
e−µt

By applying the initial condition IT (0):

IT (t) ≤ qρI

µ
− H

µ
e−µt,⇒ IT (0) ≤ qρI

µ
− H

µ
≤ qρI

µ
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Then from the inequality qρI − µIT ≥ He−µt , and taking H = qρI − µIT (0) we can get,

IT (t) ≤ qρI

µ
− F

µ
e−µt ≤ qρI

µ
−
(
qρI

µ
− IT (0)

)
e−µt

IT (t) ≤ IT (0)e−µt + qρI

µ
(1− e−µt)

IT (t) ≤ IT (0)e−µt + qρI

µ
(1− e−µt)

limt→∞IT (t) ≤ IT (0)e−µt + qρI

µ
(1− e−µt)

limt→∞IT (t) ≤
(
IT (0)− qρI

µ

)
e−µt + qρI

µ
≤ qρI

µ
.(Since, IT (0) ≤ qρI

µ
)

From the equation (4.8), we have: dR
dt
t = φT + (1− q)ρI + (1− δ)γLr − (κλ+ µ)R

If we add κλR to the right side, we get: dR
dt
t ≤ φT + (1− q)ρI + (1− δ)γLr − µR

By a standard comparision theorem, we get:
∫ dR
φT+(1−q)ρI+(1−δ)γLr−µR ≤

∫
dt

⇒− 1
µ
ln(φT + (1− q)ρI + (1− δ)γLr − µR) ≤ t+ c, where c is a constant

⇒φT + (1− q)ρI + (1− δ)γLr − µR ≥ Ke−µt,where K = e−cµt is a constant

⇒R ≤ φT + (1− q)ρI + (1− δ)γLr − µR
µ

− K

µ
e−µt

By applying the initial condition R(0):

R(t) ≤ φT+(1−q)ρI+(1−δ)γLr−µR
µ

− K
µ
e−µt

⇒ R(0) ≤ φT+(1−q)ρI+(1−δ)γLr−µR
µ

− K
µ
≤ φT+(1−q)ρI+(1−δ)γLr−µR

µ
,

Then from the inequality qφT + (1 − q)ρI + (1 − δ)γLr − µR ≥ Ke−µt , and taking
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K = qφT + (1− q)ρI + (1− δ)γLr − µR(0) we can get,

R(t) ≤φT + (1− q)ρI + (1− δ)γLr − µR
µ

− F

µ
e−µt

≤φT + (1− q)ρI + (1− δ)γLr − µR
µ

−
(
φT + (1− q)ρI + (1− δ)γLr − µR

µ
−R(0)

)
e−µt

≤R(0)e−µt + φT + (1− q)ρI + (1− δ)γLr − µR
µ

(1− e−µt)

≤R(0)e−µt + φT + (1− q)ρI + (1− δ)γLr − µR
µ

(1− e−µt)

limt→∞R(t) ≤R(0)e−µt + φT + (1− q)ρI + (1− δ)γLr − µR
µ

(1− e−µt)

limt→∞R(t) ≤
(
R(0)− φT + (1− q)ρI + (1− δ)γLr − µR

µ

)
e−µt

+ φT + (1− q)ρI + (1− δ)γLr − µR
µ

≤φT + (1− q)ρI + (1− δ)γLr − µR
µ

.

(Since, R(0) ≤ φT + (1− q)ρI + (1− δ)γLr − µR
µ

)

Therefore, all feasible solutions of the model (4.1)-(4.8) with initial conditions in

Ω = {(V, S,Hr, Lr, T, I, IT , R) ∈ R8
+ : N ≤ Λ

µ
} do remain in Ω for all t > 0. That is, the

set Ω is positively invariant and attracting.

4.3.3 Existence of Disease Free Equilibrium Point

The disease free equilibrium point of the dynamical system (4.1)−(4.8) is obtained by

setting dV
dt

= dS
dt

= dHr

dt
= dLr

dt
= dI

dt
= dT

dt
= dIT

dt
= dR

dt
= 0 and since there is no disease

we do have I = 0. Let the disease free equilibrium (DFE) of the model (4.1)−(4.8) be

denoted as:

E0 = (V 0, S0, H0
r , L

0
r, I

0, T 0, I0
T , R

0)

From equation (4.1) of the dynamical system, we have:

dV

dt
= 0⇒ ψΛ− (σλ+ θ + µ)V = 0,⇒ V 0 = ψΛ

µ+ θ
.
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From equation (4.2) of the dynamical system, we have: dS
dt

= 0

⇒(1− ψ)Λ + θV − (λ+ µ)S = 0,

⇒S0 = (1− ψ)Λ + θV 0

µ
= (1− ψ)(µ+ θ)Λ + θψΛ

µ(µ+ θ) = (θ + (1− ψ)µ)Λ
µ(µ+ θ) .

Taking the cases when I = 0, the equations dHr

dt
= dLr

dt
= dI

dt
= dIT

dt
= dT

dt
= dR

dt
= 0 and

if we solve for the rest state variable then we found that Hr = Lr = T = IT = R = 0.

Therefore, the disease free equilibrium point of the dynamical system (4.1)−(4.8) is given

by:

E0 = (V 0, S0, H0
r , L

0
r, T

0, I0, I0
T , R

0) =
(

ψΛ
(µ+ θ) ,

(θ + (1− ψ)µ)Λ
µ(µ+ θ) , 0, 0, 0, 0, 0, 0

)
.

4.3.4 Effective Reproduction Number

The reproduction number (basic reproduction number R0 or effective reproduction num-

ber Reff ) is defined as the average number of secondary infections caused by typical

infected individual during his entire period of infectiousness. This definition is given

for the models that represent spread of infection in a population, given an intervention

and naturally acquired immunity at that time. We calculate the effective reproduction

number Reff by using the next generation operator method on the system (4.1)-(4.8) as

described by Van den Driessche and Watmough (2002) as follows. Let

Fi(x)be the rate of appearance of new infections in compartment i.

V +
i (x)be the rate of transfer of individuals into compartment i by all other means,

V −i (x)be the rate of transfer of individuals out of the compartment i.

Then the disease transmission model consists of the system of equations

x
′

i = fi(x) = Fi(x)− Vi(x), where Vi(x) = V −i (x)− V +
i (x)

The effective reproduction number is obtained by taking the largest (dominant) eigenvalue

(spectral radius) of the matrix, FV −1 = {∂Fi(E0)
∂xj
}{∂Vi(E0)

∂xj
}−1 with 1 ≤ i, j ≤ n where

Fi is the rate of appearance of new infection in compartment i, Vi is the transfer of

infections from one compartment i to another and E0 is the disease-free equilibrium

point. We rearrange the equations of model system (4.1)-(4.8) with the infected classes,
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Hr, Lr and I first, screened and treatment classes, T (t) second, susceptible classes, S(t)

third, vaccination class, V (t) fourth, treatment class, IT (t) fifth and recovered class, R(t)

last. Here the infected classes are Hr, Lr and I. Therefore,

Fi =


F1

F2

F3

 =


λ(S + σV + κR)

0

0



F =
[
∂Fi(E0)
∂xj

]
=


∂F1(E0)
∂Hr

∂F1(E0)
∂Lr

∂F1(E0)
∂I

∂F2(E0)
∂Hr

∂F2(E0)
∂Lr

∂F2(E0)
∂I

∂F3(E0)
∂Hr

∂F3(E0)
∂Lr

∂F3(E0)
∂I

 =


0 0 cω(σV 0+S0)

N0

0 0 0

0 0 0



vi =


v1

v2

v3

 =


(µ+ α)Hr

−αε(1− p)Hr + (µ+ γ)Lr
−δγLr − α(1− ε)(1− p)Hr + (µ+ ρ+ d)I



V =
[
∂vi(E0)
∂xj

]
=


∂v1(E0)
∂Hr

∂v1(E0)
∂Lr

∂v1(E0)
∂I

∂v2(E0)
∂Hr

∂v2(E0)
∂Lr

∂v2(E0)
∂I

∂v3(E0)
∂Hr

∂v3(E0)
∂Lr

∂v3(E0)
∂I



=


(α + µ) 0 0

−αε(1− p) (γ + µ) 0

−α(1− ε)(1− p) −γδ (ρ+ µ+ d)


of the dynamical system (4.1)-(4.8)

Since detV = (α + µ)(γ + µ)(ρ+ µ+ d) 6= 0 then V is non-singular. The inverse V −1 of

the matrix V is given by: V −1 = 1
detV

Vadj, where Vadj is the adjoint matrix of the matrix

V . And Vadj = [Cij]T where Cij = (−1)i+jMij is cofactor of an element vij of the matrix

V and Mij is minor of an element vij of the matrix V .

We found the adjoint matrix Vadj of the matrix V is:

Vadj =


(µ+ γ)(µ+ ρ+ d) 0 0

αε(1− p)(µ+ ρ+ d) (µ+ α)(µ+ ρ+ d) 0

αε(1− p)δγ + α(1− ε)(1− p)(µ+ γ) δγ(µ+ α) (µ+ α)(µ+ γ)


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Thus,the inverse matrix V −1 of the matrix V is given as:

V −1 = 1
detV

Vadj =


1

(µ+α) 0 0
αε(1−p)

(µ+α)(µ+γ)
1

(µ+γ) 0
αε(1−p)δγ+α(1−ε)(1−p)(µ+γ)

(µ+α)(µ+γ)(µ+ρ+d)
δγ

(µ+γ)(µ+ρ+d)
1

(µ++d)


We then compute matrix FV −1, defined as the next generation operator (Diekmann,

Heesterbeek, & Metz, 1990).

FV −1 =


0 0 cω(σV 0+S0)

N0

0 0 0

0 0 0




1

(µ+α) 0 0
αε(1−p)

(µ+α)(µ+γ)
1

(µ+γ) 0
αε(1−p)δγ+α(1−ε)(1−p)(µ+γ)

(µ+α)(µ+γ)(µ+ρ+d)
δγ

(µ+γ)(µ+ρ+d)
1

(µ++d)



=


αε(1−p)δγ+α(γ+µ)(1−ε)(1−p)

(α+µ)(γ+µ)(ρ+µ+d)
cω(S0+σV 0)

N0
δγ

(γ+µ)(ρ+µ+d)
cω(S0+σV 0)

N0
1

ρ+µ+d
cω(S0+σV 0)

N0

0 0 0

0 0 0


Where, N0 = S0 + V 0 = Λ

µ
.

Therefore, λ1 = αε(1−p)δγ+α(γ+µ)(1−ε)(1−p)
(α+µ)(γ+µ)(ρ+µ+d)

cω(S0+σV 0)
N0 , λ2 = λ3 = 0 are the eigenvalues of the

matrix FV −1. Thus„ the spectral radius of FV −1 is, λ1 = cω(σψµ+(θ+(1−ψ)µ))
(θ+µ)

(1−p)α(εγδ+(1−ε)(γ+δ))
(α+µ)(γ+µ)(ρ+µ+d) .

Hence, Reff = cω(σψµ+(θ+(1−ψ)µ))
(θ+µ)

(1−p)α(εγδ+(1−ε)(γ+δ))
(α+µ)(γ+µ)(ρ+µ+d) is effective reproduction number for

the the dynamical system (4.1)-(4.8).

Local Stability Analysis of the Disease Free Equilibrium Point

Theorem 4.3. The disease free equilibrium point E0 =
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0

)
of the dynamical system (4.1)−(4.8) is locally asymptotically stable if Reff < 1; and E0

is unstable otherwise.

Proof. The Jacobean matrix of the dynamical system (4.1)−(4.8) with respect to
(V, S,Hr, Lr, T, I, IT , R) at any disease free equilibrium point E0 is

J(E
0) =



∂f1(E0)
∂V

∂f1(E0)
∂S

∂f1(E0)
∂Hr

∂f1(E0)
∂Lr

∂f1(E0)
∂T

∂f1(E0)
∂I

∂f1(E0)
∂IT

∂f1(E0)
∂R

∂f2(E0)
∂V

∂f2(E0)
∂S

∂f2(E0)
∂Hr

∂f2(E0)
∂Lr

∂f2(E0)
∂T

∂f2(E0)
∂I

∂f2(E0)
∂IT

∂f2(E0)
∂R

∂f3(E0)
∂V

∂f3(E0)
∂S

∂f3(E0)
∂Hr

∂f3(E0)
∂Lr

∂f3(E0)
∂T

∂f3(E0)
∂I

∂f3(E0)
∂IT

∂f3(E0)
∂R

∂f4(E0)
∂V

∂f4(E0)
∂S

∂f4(E0)
∂Hr

∂f4(E0)
∂Lr

∂f4(E0)
∂T

∂f4(E0)
∂I

∂f4(E0)
∂IT

∂f4(E0)
∂R

∂f5(E0)
∂V

∂f5(E0)
∂S

∂f5(E0)
∂Hr

∂f5(E0)
∂Lr

∂f5(E0)
∂T

∂f5(E0)
∂I

∂f5(E0)
∂IT

∂f5(E0)
∂R

∂f6(E0)
∂V

∂f6(E0)
∂S

∂f6(E0)
∂Hr

∂f6(E0)
∂Lr

∂f6(E0)
∂T

∂f6(E0)
∂I

∂f6(E0)
∂IT

∂f6(E0)
∂R

∂f7(E0)
∂V

∂f7(E0)
∂S

∂f7(E0)
∂Hr

∂f7(E0)
∂Lr

∂f7(E0)
∂T

∂f7(E0)
∂I

∂f7(E0)
∂IT

∂f7(E0)
∂R

∂f8(E0)
∂V

∂f8(E0)
∂S

∂f8(E0)
∂Hr

∂f8(E0)
∂Lr

∂f8(E0)
∂T

∂f8(E0)
∂I

∂f8(E0)
∂IT

∂f8(E0)
∂R


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The Jacobean matrix of the dynamical system (4.1)−(4.8) at the disease free equilibrium

point
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0

)
is

J(E0) =



−(θ + µ) 0 0 0 0 −σcω V 0

N0 0 0

θ −µ 0 0 0 −cω V 0

N0 0 0

0 0 −(α + µ) 0 0 cω (S0+σV 0))
N0 0 0

0 0 αε(1− p) −(γ + µ) 0 0

0 0 αp 0 −(φ+ µ) 0 0 0

0 0 α(1− ε)(1− p) δγ 0 −(ρ+ µ+ d) 0 0

0 0 0 0 0 qρ −(ϕ+ µ) 0

0 0 0 (1− δ)γ φ (1− q)ρ ϕ −µ


The corresponding characteristic equation is obtained by

|J(E0)− λI8| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 0 0 0 0 −σcω V 0

N0 0 0

θ d2 0 0 0 −cω V 0

N0 0 0

0 0 d3 0 0 cω (S0+σV 0))
N0 0 0

0 0 αε(1− p) d4 0 0 0 0

0 0 αp 0 d5 0 0 0

0 0 α(1− ε)(1− p) δγ 0 d6 0 0

0 0 0 0 0 qρ d7 0

0 0 0 (1− δ)γ φ (1− q)ρ ϕ d8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

where, I8 is the identity matrix of order eight, d1 = −(θ + µ) − λ, d2 = −µ − λ, d3 =

−(α + µ) − λ, d4 = −(γ + µ) − λ, d5 = −(φ + µ) − λ, d6 = −(ρ + µ + d) − λ, d7 =

−(ϕ+ µ)− λ, d8 = −µ− λ

That is,

|J(E0)− λI8| = d1d2d5d7d8

∣∣∣∣∣∣∣∣∣∣∣
d3 0 cω (S0+σV 0))

N0

αε(1− p) d4 0

α(1− ε)(1− p) δγ d6

∣∣∣∣∣∣∣∣∣∣∣
= 0

Thus, the roots of the characteristic equation are λ1 = −µ or λ2 = −µ or λ3 = −(θ + µ)
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or λ4 = −(φ+ µ) or λ5 = −(ϕ+ µ) or λ3 + c1λ
2 + c2λ+ c3 = 0 Where,

c1 = 3µ+ α + γ + ρ+ d,

c2 = (α + µ)(γ + µ) + (α + µ)(ρ+ µ+ d) + (γ + µ)(ρ+ µ+ d),

c3 = (α + µ)(γ + µ)(ρ+ µ+ d)− cω(S0 + σV 0)[δγαε(1− p) + α(1− ε)(1− p)(γ + µ)]
N0 ,

= (α + µ)(γ + µ)(ρ+ µ+ d)
(

1− cω(S0 + σV 0)[δγαε(1− p) + α(1− ε)(1− p)(γ + µ]
α + µ)(γ + µ)(ρ+ µ+ d)N0

)

= (α + µ)(γ + µ)(ρ+ µ+ d)[1−Reff ]

The Routh-Hurwitz conditions are the necessary and sufficient conditions on the coeffi-

cients of the cubic polynomials equations. These conditions ensure that all roots of the

polynomials have negative real parts.

The Routh-Hurwitz conditions simplifies to c1 > 0, c2 > 0, c3 > 0 and c1c2 > c3. That is,

the necessary conditions for Routh-Hurwitz c3 > 0 is true if Reff < 1. Now justify the

sufficient condition for the Routh-Hurwitz criteria: c1c2−c3 > 0, c1c2−c3 = (3µ+α+γ+

ρ+d)[(α+µ)(γ+µ)+(α+µ)(ρ+µ+d)+(γ+µ)(ρ+µ+d)]−(α+µ)(γ+µ)(ρ+µ+d)[1−Reff ].

Thus, c1c2−c3 > 0 if and only is Reff < 1. Therefore all of the eigenvalues of the Jacobean

matrix have negative real parts when Reff < 1. Thus, the disease free equilibrium E0, of

the dynamical system (4.1)−(4.8) is locally asymptotical stable whenever Reff < 1 and

unstable otherwise that is unstable if Reff > 1.

Global Stability of Diseases free Equilibrium point

Theorem 4.4. The diseases free equilibrium point E0 =
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0

)
of the dynamical system (4.1) - (4.8) is globally asymptotically stable in Ω if Reff < 1,

and unstable otherwise.

Proof. We apply a matrix-theoretic method using the Perron eigenvector to prove the

global stability of the disease-free equilibrium as in [109]. The dynamical system (4.1)-

(4.8), the TB disease compartment of is x = (Hr, Lr, I)T ∈ R3 and non-disease compart-

ment y ∈ R5.
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That is, F =


0 0 cω

0 0 0

0 0 0

, V =


(α + µ) 0 0

−αε(1− p) (γ + µ) 0

−α(1− ε)(1− p) −γδ (ρ+ µ+ d)

 and

x
′ = (F − V )x− f(x, y)

Where, the non-negative matrix F , of the new TB infection terms, and the matrix V , of

the transition terms of TB and f(x, y) = (0, 0, 0)T

Since detV = (α + µ)(γ + µ)(ρ+ µ+ d) 6= 0, the matrix V is invertible. Therefore,

V −1 =


1

α+µ 0 0
αε(1−p)

(α+µ)(γ+µ)
1

γ+µ 0
αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)ρ+µ+d
γδ

(γ+µ)
1

(ρ+µ+d)


Thus, the product of the matricies V −1 and F is:

V −1F =


1

α+µ 0 0
αε(1−p)

(α+µ)(γ+µ)
1

γ+µ 0
αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)ρ+µ+d
γδ

(γ+µ)
1

(ρ+µ+d)




0 0 cω

0 0 0

0 0 0



= cω


0 0 1

α+µ

0 0 αε(1−p)
(α+µ)(γ+µ)

0 0 αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρ+µ+d)


Hence, λ1 = λ2 = 0 and λ3 = αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)(ρ+µ+d) , are eigenvalues of V −1F . Let,

$T = (u1, u2, u3) be the left eigenvector of V −1F corresponding to λ3 = αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρ+µ+d)

Thus,

$TV −1F = cω(u1, u2, u3)


−αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)(ρ+µ+d) 0 1
α+µ

0 −αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)
(γ+µ)(γ+µ)(ρ+µ+d)

αε(1−p)
(α+µ)(γ+µ)

0 0 0


That is, $T = (0, 0, 1) is the left eigenvector of V −1F corresponding to the eigenvalue

λ3 = αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρ+µ+d) .

Lets’ define a function W (Hr, Lr, I) as:

W = $TV −1x = αε(1− p)γδ + α(1− ε)(1− p)(γ + µ)
(γ + µ)(γ + µ)(ρ+ µ+ d) Hr + γη

γ + µ
Lr + 1

(ρ+ µ+ d)I
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The derivative of W with respect to time:

W
′ = $TV −1x

′
, Since x′ = (F − V )x− f(x, y)

= $TV −1[(F − V )x− f(x, y)]

= $T [(V −1F − V −1V )x− V −1f(x, y)]

= cω(0, 0, 1)


−1 0 1

α+µ

0 −1 αε(1−p)
(α+µ)(γ+µ)

0 0 αε(1−p)γδ+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρs+µ+ds) − 1

x−$TV −1f(x, y)]

= (Reff − 1)x− V −1f(x, y)

= (Reff − 1)x−$TV −1f(x, y)

Since $T > 0, V −1 > 0 and f(x, y) = 0,W ′
< 0, if Reff < 1.

Hence, W ′
< 0, if Reff < 1. And W

′ = 0, at the disease free equilibrium point E0.

By LaSalle’s invariant principle, every solution to the model equations (4.1)−(4.8) with

initial conditions in Ω tends to E0 as t → ∞. Hence, since the region Ω is positively-

invariant, the disease free equilibrium point, E0 is globally asymptotically stable in Ω if

Reff < 1.

4.3.5 The Endemic Equilibrium Point

The endemic equilibrium point in terms of the equilibrium value of the force of infection

λ∗ is given as:

E∗ = (V ∗, S∗, H∗r , L∗r, T ∗, I∗, I∗T , R∗)

From equation (4.1) of the dynamical system (4.1)−(4.8):

dV

dt
= ψΛ− (σλ+ θ + µ)V = 0 implies V ∗ = ψΛ

(σλ∗ + θ + µ)
From equation (4.2) of the dynamical system (4.1)−(4.8):

dS

dt
= (1− ψ)Λ + θV − (λ+ µ)S = 0⇒ S∗ =(1− ψ)Λ + θV ∗

(λ∗ + µ)

=Λ(1− ψ)σ(λ∗) + θ + (1− ψ)µ]
(λ∗ + µ)[σλ∗ + θ + µ]

=Λ(1− ψ)σλ∗ + θ + (1− ψ)µ]
(λ∗ + µ)[σλ∗ + θ + µ]
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From equation (4.3) of the dynamical system (4.1)−(4.8):
dHr

dt
= λS + σλV + κλR− (α + µ)Hr = 0⇒ H∗r = λ∗(S∗ + σV ∗ + κR∗)

(α + µ)
From equation (4.4) of the dynamical system (4.1)−(4.8):

dLr
dt

= αε(1− p)Hr − (γ + µ)Lr = 0⇒ L∗r = αε(1− p)H∗r
(γ + µ)

From equation (4.5) of the dynamical system (4.1)−(4.8):
dI

dt
=δγLr + α(1− ε)(1− p)Hr − (ρ+ µ+ d)I = 0

⇒ I∗ =δγL
∗
r + α(1− ε)(1− p)H∗r

(ρ+ µ+ d)

⇒ I∗ =(δγαε(1− p) + α(γ + µ)(1− ε)(1− p))
(γ + µ)(ρ+ µ+ d) H∗r

⇒ H∗r = (γ + µ)(ρ+ µ+ d)
δγαε(1− p) + α(γ + µ)(1− ε)(1− p)I

∗and

⇒ L∗r =αε(1− p)H
∗
r

(γ + µ) = αε(1− p)(ρ+ µ+ d)
(δγαε(1− p) + α(γ + µ)(1− ε)(1− p))I

∗

From equation (4.6) of the dynamical system (4.1)−(4.8):
dT

dt
=αpHr − (φ+ µ)T = 0⇒ T ∗ = αpH∗r

(φ+ µ)

⇒ T ∗ = αp(γ + µ)(ρ+ µ+ d)
(φ+ µ)[δγαε(1− p) + α(γ + µ)(1− ε)(1− p)]I

∗

From equation (4.7) of the dynamical system (4.1)−(4.8):
dIT
dt

=qρI − (ϕ+ µ)IT = 0⇒ I∗T = qρI∗

(ϕ+ µ)
From equation (4.8) of the dynamical system (4.1)−(4.8):

dR

dt
=(1− q)ρI + γ(1− δ)Lr + φT +−(κλ+ µ)R = 0

R∗ =(1− q)ρI∗ + γ(1− δ)L∗r + φT ∗

(κλ∗ + µ) = (1− q)ρI∗ + γ(1− δ)L∗r + φT ∗

(κλ∗ + µ)

= 1
(κλ∗ + µ)

(1− q)ρ+ γ(1− δ)αδ(1− p)(ρ+ µ+ d)
[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)]

+ 1
(κλ∗ + µ)

φαp(γ + µ)(ρ+ µ+ d)
(φ+ µ)[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)]I

∗

Hence, the endemic equilibrium point is:

E∗ = (V ∗, S∗, H∗r , L∗r, I∗, T ∗, I∗T , R∗)

where V ∗ = ψΛ
σλ∗+θ+µ , S∗ = Λ(1−ψ)σλ∗+θ+(1−ψ)µ]

(λ∗+µ)(σλ∗+θ+µ) , H∗r = (γ+µ)(ρ+µ+d)
γδαε(1−p)+α(γ+µ)(1−ε)(1−p))I

∗

L∗r = αε(1−p)(ρ+µ+d)
γδαε(1−p)+α(γ+µ)(1−ε)(1−p)I

∗, T ∗ = αp(γ+µ)(ρ+µ+d)
(φ+µ)[γδαε(1−p)+α(γ+µ)(1−ε)(1−p)]I

∗, I∗T = qρI∗

(ϕ+µ)

R∗ = 1
κλ∗+µ × {(1− q)ρ+ γ(1−δ)αε(1−p)(ρ+µ+d)

[γδαε(1−p)+α(γ+µ)(1−ε)(1−p)] + φαp(γ+µ)(ρ+µ+d)
(φ+µ)[γδαε(1−p)+α(γ+µ)(1−ε)(1−p)]}I

∗
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Existence of endemic equilibrium point

As the endemic equilibrium point E∗ given in terms λ∗ the existence of the equilibrium

value of the force of infection λ∗ shows the existence of E∗. So, we are going to set the

conditions that λ∗ exists.

λ∗ = cωµ

Λ I∗

where N∗(t) is replaced by its limiting value, N∗ = Λ
µ

λ∗ = cωµ

Λ I∗ ⇒ λ∗ = cωµ

Λ
γδαε(1− p) + α(γ + µ)(1− ε)(1− p)

(γ + µ)(ρ+ µ+ d) H∗r

⇒ λ∗ = a1Reffλ
∗ [(1− ψ)σλ∗ + θ + (1− ψ)µ]
(λ∗ + µ)(σλ∗ + θ + µ) + σψ

(σλ∗+θ+µ)
+ a1a2Reffλ

∗2

Where, a1 = µ(θ+µ)
Λ+(θ+(1−φ)µ) , and

a2 = κΛ
cωµ

{
ρ+ γ(1− δ)αε(1− p)(ρ+ µ+ d)

[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)] + φαp(γ + µ)(ρ+ µ+ d)
(φ+ µ)[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)]

}

⇒σa1a2Reff (λ∗)4 + [(σµ+ θ + µ)a1a2Reff − σ](λ∗)3

+ [µ(θ + µ)a1a2 + σa1]Reff − (σµ+ θ + µ)(λ∗)2

+ a1Reff [θ + (1− ψ)µ− σψµ]− µ(θ + µ)λ∗ = 0

⇒B1(λ∗)4 +B2(λ∗)3 +B3(λ∗)2 +B4λ
∗ = 0 (4.9)

where B1 =σa1a2Reff > 0, B2 = (σµ+ θ + µ)a1a2Reff − σ

B3 =[µ(θ + µ)a1a2 + σa1]Reff − (σµ+ θ + µ), B4 = a1Reff [θ + (1− ψ)µ− σψµ]− µ(θ + µ)

The solutions for the quartic polynomial (4.9) are λ∗ = 0 and B1(λ∗)3 +B2(λ∗)2 +B3λ
∗+

B4 = 0. The case λ∗ = 0 corresponds to no TB disease and B1(λ∗)3 + B2(λ∗)2 + B3λ
∗ +

B4 = 0 corresponds to the existence of at most three endemic equilibrium points.

Theorem 4.5. In the equation of polynomial, B1(λ∗)3 + B2(λ∗)2 + B3λ
∗ + B4 = 0, the

relation between roots and coefficients are given by:

1) B2
B1

= −( sum of all roots)
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2) B3
B1

= sum of products of roots taken two at a time

3) B4
B1

= − (products of roots taken three at a time)

Remark:

The TB model system (4.1)−(4.8) has:

1) one positive endemic equilibrium if B2 < 0, and B3 = B4 = 0. That is if Reff <

σ
(σµ+θ+µ)a1a2

, one positive endemic equilibrium. And the root will be, r1 = −B2
B1

.

2) two positive endemic equilibrium if B2 < 0, B3 > 0 and B4 = 0. That is, if
(σµ+θ+µ)

(µ(θ+µ)a1a2+σa1) < Reff <
σ

(σµ+θ+µ)a1a2
two positive endemic equilibrium. r1 + r2 =

−B2
B1

and r1r2 = B3
B1

.

Therefore r1(−r1 − B2
B1

) = B3
B1
⇒ r2

1 + r1
B2
B1

+ B3
B1

= 0

⇒ r1 = −B2±
√
B2

2−4B1B3
2B1

.

Then has two roots if B2 < 0 and B2
2 − 4B1B3 > 0. Reff <

σ
(σµ+θ+µ)a1a2

and

[(σµ+ θ + µ)a1a2Reff − σ]2 > 4[µ(θ + µ)a1a2 + σa1]Reff − (σµ+ θ + µ)

3) three positive endemic equilibrium if the coefficients B2 < 0, B3 > 0 and B4 < 0

with the relation to the three roots r1+r2+r3 = −B2/B1 , r1r2+r1r3+r2r3 = B3/B1

and r1r2r3 = −B4/B1

That is, if (σµ+θ+µ)
µ(θ+µ)a1a2+σa1

< Reff <
σ

(σµ+θ+µ)a1a2
and Reff <

µ(θ+µ)
a1[θ+(1−ψ)µ−σψµ] .

4) no positive endemic equilibrium otherwise.

Theorem 4.6. The model (4.1)−(4.8) has unique endemic equilibrium if B2 <0 and

B3 = B4 = 0. That is, the model (4.1)−(4.8) has unique endemic equilibrium λ∗ = m∗ =

−B2/B1 .

Proof. Since B3 = B4 = 0, from quartic polynomial 4.9, B1(λ∗)4 + B2(λ∗)3 + B3(λ∗)2 +

B4λ
∗ = 0 we have (λ∗)3(B1λ

∗ + B2) = 0. Then the only positive endemic equilibrium

is, λ∗ = −B2/B1 since B1 > 0 and B2 < 0. The model (4.1)−(4.8) has unique endemic

equilibrium if B2 < 0 and B3 = B4 = 0.
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Theorem 4.7. The dynamical system (4.1)−(4.8) has unique endemic equilibrium if

Reff < σ
(σµ+θ+µ)a1a2

and B2 = B3 = 0. That is, the model (4.1)−(4.8) has unique

endemic equilibrium when λ∗ = m∗ = −B2/B1 = σ−(σµ+θ+µ)a1a2Reff

σa1a2Reff

Proof. The model (4.1)−(4.8) has unique endemic equilibrium ifB2 < 0 andB3 = B4 = 0.

That is, B2 < 0 ⇒ Reff <
σ

(σµ+θ+µ)a1a2
. And hence, at the unique endemic equilibrium

point, λ∗ = m∗ = −B2/B1 = σ−(σµ+θ+µ)a1a2Reff

σa1a2Reff
Where, m∗ = σ−(σµ+θ+µ)a1a2Reff

σa1a2Reff
.

Local Stability of the Endemic Equilibrium Point

Theorem 4.8. The endemic equilibrium E∗ of the dynamical system (4.1)− (4.8) is

locally asymptotically stable if Reff > 1 and R∗ < Λ(d+µ)
cωκµ

Proof. E∗ exists and is unique if Reff > 1. The components of the unique endemic

equilibrium E∗ can then be obtained by substituting the unique value of λ∗ = m∗ in to

(4.1)-(4.8). Then the endemic equilibrium, E∗ = (V ∗, S∗, H∗r , L∗r, I∗, T ∗, I∗T , R∗), where

V ∗ = ψΛ
(σm∗ + θ + µ) , S

∗ = Λ(1− ψ)σm∗ + (θ + (1− ψ)µ]
(m∗ + µ)(σm∗ + θ + µ) ,

H∗r = Λm∗(γ + µ)(ρ+ µ+ d)
(cωµ(γδαε(1− p) + α(γ + µ)(1− ε)(1− p)) ,

L∗r = Λm∗αε(1− p)(ρ+ µ+ d)
cωµ(γδαε(1− p) + α(γ + µ)(1− ε)(1− p)) , I

∗ = Λm∗
cωµ

,

T ∗ = Λm∗αp(γ + µ)(ρ+ µ+ d)
cωµ(φ+ µ)[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)] , (IT )∗ = qρI∗

(ϕ+ µ)

R∗ = Λm∗
µ(cωκm∗ + Λ)ρ+ γ(1− η)αε(1− p)(ρ+ µ+ d)

[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)]

+ Λm∗
µ(cωκm∗ + Λ)

φαp(γ + µ)(ρ+ µ+ d)
(φ+ ϕµ)[γδαε(1− p) + α(γ + µ)(1− ε)(1− p)]

m∗ = σ − (σµ+ θ + µ)a1a2Reff

σa1a2Reff

The Jacobean matrix of the dynamical system (4.1)-(4.8) at the endemic equilibrium

67



point E∗ is given by:

J(E∗) =



g1 0 0 0 b1 0 0 0

θ g2 0 0 b2 0 0 0

σm∗ m∗ g3 0 z 0 0 κm∗

0 0 αε(1− p) g4 0 0 0 0

0 0 α(1− ε)(1− p) δγ g5 0 0 0

0 0 αp 0 0 g6 0 0

0 0 0 0 qρ 0 g7 0

0 0 0 γ(1− δ) ρ φ ϕ g8



(4.10)

Where, m∗ = σ−(σµ+θ+µ)a1a2Reff

σa1a2Reff
, g1 = −(σm∗ + θ + µ), g2 = −(m∗ + µ),g3 = −(α + µ),

g4 = −(γ+µ),g5 = −(ρ+µ+d),g6 = −(φ+µ),g7 = −(ϕ+µ),g8 = −(κm∗+µ),b1 = σcωV ∗

N∗
,

b2 = cωV ∗

N∗
, z = cωµ

Λ (S∗ + σV ∗ + κR∗)

The characteristic equation of J(E∗) denoted by |J(E∗)− λI| = 0, and given by:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 − λ 0 0 0 b1 0 0 0

θ g2 − λ 0 0 b2 0 0 0

σm∗ m∗ g3 − λ 0 z 0 0 κm∗

0 0 αε(1− p) g4 − λ 0 0 0 0

0 0 α(1− ε)(1− p) δγ g5 − λ 0 0 0

0 0 αp 0 0 g6 − λ 0 0

0 0 0 0 qρ 0 g7 − λ 0

0 0 0 γ(1− δ) ρ φ ϕ g8 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4.11)

Now we apply the Gershgorin circle theorem to determine the sign of the eigenvalues of

the characteristic equation |J(E∗)− λI| = 0.

From the first column of the Jacobian matrix J(E∗),(4.10)

|g1| = (σm∗ + θ + µ) and Σ8
i=1,i 6=1ci1 = θ + σm∗

⇒|g1| > Σ8
i=1,i 6=1ci1

From the second column of the Jacobian matrix J(E∗),(4.10)

|g2| = (m∗ + µ), and Σ8
i=1,i 6=2ci2 = m∗ ⇒ |g2| > Σ8

i=1,i 6=2ci2

68



From the third column of the Jacobian matrix J(E∗), (4.10)

|g3| = (α + µ), and Σ8
i=1,i 6=3ci3 = αε(1− p) + α(1− ε)(1− p) + αp = α

⇒|g3| > Σ8
i=1,i 6=3ci3

From the fourth column of the Jacobian matrix J(E∗), (4.10)

|g4| = (γ + µ), and Σ8
i=1,i 6=4ci4 = δγ + γ(1− δ) = γ ⇒ |g4| > Σ8

i=1,i 6=4ci4

From the fifth column of the Jacobian matrix J(E∗),(4.10)

|g5| = ρ+ µ+ d and Σ8
i=1,i 6=5ci5 = b1 + b2 + z + ρ = cω

N∗
κR∗ + ρ

If we let N∗ = Λ
µ

, then Σ8
i=1,i 6=5ci5 = cωµκ

Λ R∗ + ρ. ⇒ |g5| > Σ7
i=1,i 6=5ci5 if R∗ < Λ(d+µ)

cωµκ
.

From the sixth column of the Jacobian matrix J(E∗),(4.10)

|g6| = (φ+ µ) and Σ8
i=1,i 6=6ci6 = φ⇒ |g6| > Σ8

i=1,i 6=6ci6

From the sixth column of the Jacobian matrix J(E∗), (4.10)

|g7| = (ϕ+ µ) and Σ8
i=1,i 6=7ci7 = ϕ⇒ |g7| > Σ8

i=1,i 6=7ci7

From the seventh column of the Jacobian matrix J(E∗), (4.10)

|g8| = (κm∗ + µ) and Σ8
i=1,i 6=8ci8 = κm∗ ⇒ |g8| > Σ8

i=1,i 6=8ci8

Therefore, |g5| > Σ8
i=1,i 6=5ci5 if R∗ < Λ(d+µ)

cωµκ
and for the remaining column of the Jacobian

matrix J(E∗), |gi| > Σ8
i=1,i 6=jcij for j = {1, . . . , 8} − {5}. Therefore, |cii| > Σ8

i=1,i 6=jcij ,

for j = 1, . . . , 8, for the matrix J(E∗),(4.10) if R∗ < Λ(d+µ)
cωµκ

. That is, the matrix J(E∗)

is a strictly column diagonally dominant matrix if R∗ < Λ(d+µ)
cωµκ

. And also all diagonal

elements of J(E∗) are negative. Therefore, using the Gershgorin circle theorem, the

radius of the disc less than the magnitude of corresponding element if R∗ < Λ(d+µ)
cωκµ

. We

can show that all eigenvalues of J(E∗) has negative real part if Reff > 1 and R∗ < Λ(d+µ)
cωκµ

.

Hence, the endemic equilibrium point E∗ is locally asymptotically stable if Reff > 1 and

R∗ < Λ(d+µ)
cωκµ

.
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Global Stability of Endemic Equilibrium Point

Theorem 4.9. The endemic equilibrium E∗ of Model (4.1)-(4.8) is globally asymptoti-

cally stable if Reff > 1, V
V ∗

, S
S∗

, R
R∗
≤ 1 and Hr

H∗r
≤ I

I∗
.

Proof. We use a graph-theoretic method as in [109] to construct a Lyapunov function.

We define functions:

D1 = V − V ∗ − V ∗ln V
V ∗

, D2 = S − S∗ − S∗ln S
S∗

, D3 = Hr −H∗r −H∗r ln
Hr

H∗r
,

D4 = Lr − L∗r − L∗rln
Lr
L∗r

, D5 = I − I∗ − I∗ln I
I∗
, D6 = T − T ∗ − T ∗ln T

T ∗
,

D7 = IT − I∗T − I∗T ln
IT
I∗T

, D8 = R−R∗ −R∗ln R
R∗

Differentiating the functions Di for i = 1, ..., 8 with respect to time, and use the values

at the endemic equilibrium point E∗ that:

ψΛ = (σλ∗ + θ + µ)V ∗, (1− ψ)Λ = −θV ∗ + (λ∗ + µ)S∗,

(α + µ) = λ∗(S∗ + σV ∗ + κR∗)
H∗r

, (γ + µ) = αε(1− p)H∗r
L∗r

,

(ρ+ µ+ d) = δγL∗r
I∗

+ α(1− ε)(1− p)H∗r
I∗

, (φ+ µ) = αpH∗r
T ∗

,

(ϕ+ µ) = qρ

I∗T
I∗, µ = ρI∗

R∗
+ γ(1− δ)L∗r

R∗
+ φT ∗

R∗
+ ϕ(IT )∗

R∗
− κλ∗

And using the inequality 1 − x + lnx ≤ 0, for all x > 0 and the values at the endemic

equilibrium point E∗ that:

D
′

1 =(1− V ∗

V
)V ′ = (1− V ∗

V
)(ψΛ− (σλ+ θ + µ)V )

=− (θ + µ)(V − V ∗)2

V
+ cσω

N∗
V ∗

(
I∗ − IV

V ∗
+ I − V ∗

V

)
=− (θ + µ)(V − V ∗)2

V
+ cσω

N∗
V ∗I∗

(
1− IV

I∗V ∗
− V ∗

V
+ I

I∗

)
≤cσω
N∗

V ∗I∗
(

1− IV

I∗V ∗
− V ∗

V
+ I

I∗

)
≤ cσω

N∗
V ∗I∗

(
−ln IV

I∗V ∗
− V ∗

V
+ I

I∗

)
≤σλ∗V ∗

(
−ln I

I∗
+ ln

V ∗

V
− V ∗

V
+ I

I∗

)
= a15G15

70



D
′

2 =
(

1− S∗

S

)
S
′ =

(
1− S∗

S

)
((1− ψ)Λ + θV − (λ+ µ)S)

=(1− S∗

S
)(−θV ∗ + (λ∗ + θ)S∗ + θV − (λ+ µ)S)

=− µ(S − S∗)2

S
+ θV ∗

(
S∗

S
− 1− V S∗

V ∗S
+ V

V ∗

)
+ cω

N∗
S∗I∗

(
1− IS

I∗S∗
− S∗

S
+ I

I∗

)
≤θV ∗

(
S∗

S
− 2− lnV S

∗

V ∗S
+ V

V ∗

)
+ S∗λ∗

(
−ln I

I∗
+ ln

S∗

S
− S∗

S
+ I

I∗

)
= : a21G21 + a25G25

D
′

3 =
(

1− H∗r
Hr

)
H
′

r =
(

1− H∗r
Hr

)
(λS + σλV + κλR− (α + µ)Hr)

=
(

1− H∗r
Hr

)
(λS + σλV + κλR + λ∗

(
− S

∗

H∗r
− σ V

∗

H∗r
− κR

∗

H∗r
)Hr

)

≤λ∗S∗
(
IS

I∗S∗
− I

I∗
− ln S

S∗

)
+ σV ∗λ∗

(
IV

I∗S∗
− ln V

V ∗

)
+ κR∗λ∗

(
IR

I∗R∗
− I

I∗
− ln R

R∗

)
+ (S∗ + σV ∗ + κR∗)λ∗

(
I

I∗
− Hr

H∗r
+ ln

Hr

H∗r
− ln I

I∗

)

= : a32G32 + a31G31 + a38G38 + a35G35

D
′

4 =
(

1− L∗r
Lr

)
L
′

r =
(

1− L∗r
Lr

)
(αε(1− p)Hr − (γ + µ)Lr)

=αε(1− p)H∗r
(

1− L∗r
Lr

)(
H∗r
Hr

− L∗r
Lr

)
= αε(1− p)H∗r

(
1− L∗r

Lr
+ H∗r
Hr

− H∗r
Hr

L∗r
Lr

)
≤αε(1− p)H∗r

(
−L

∗
r

Lr
− lnL

∗
r

Lr

H∗r
Hr

+ H∗r
Hr

)
≤αε(1− p)H∗r

(
−Lr
L∗r

+ ln
Lr
L∗r
− lnHr

H∗r
+ Hr

H∗r

)
= a43G43

D
′

5 =
(

1− I∗

I

)
I
′ = (1− I∗

I
)(δγLr + α(1− ε)(1− p)Hr − (ρ+ µ+ d)I)

=
(

1− I∗

I

)
(δγLr + α(1− ε)(1− p)Hr − (δγL∗r + α(1− ε)(1− p)H∗r ) I

I∗

=δγL∗r
(

1− I

I∗
− I

I∗r

Lr
L∗r

+ Lr
L∗r

)
+ α(1− ε)(1− p)H∗r

(
1− Is

I∗s
− I

I∗
Hr

H∗r
+ Hr

H∗r

)

≤δγL∗r

(
− I

I∗
− ln I

I∗
Lr
L∗r

+ Lr
L∗r

)
+ α(1− ε)(1− p)H∗r

(
− I

I∗
− ln I

I∗
Hr

H∗r
+ Hr

H∗r

)

≤δγLr∗
(
− I

I∗
+ ln

I

I∗
− lnLr

L∗r
+ Lr
L∗r

)
+ α(1− ε)(1− p)H∗r

(
− I

I∗
+ ln

I

I∗
− lnHr

Hr

+ Hr

Hr

)
= : a54G54 + a53G53
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D
′

6 =
(

1− T ∗

T

)
T
′ =

(
1− T ∗

T

)
(αpHr − (φ+ µ)T ) = (φ+ µ)T ∗

(
1− T ∗

T

)(
Hr

H∗r
− T ∗

T

)

=(φ+ µ)T ∗
(
Hr

H∗r
− T

T ∗
− T ∗

T

Hr

H∗r
+ 1

)
≤ (φ+ µ)T ∗(Hr

H∗r
− T

T ∗
− lnT

∗

T

Hr

H∗r
)

≤(φ+ µ)T ∗(Hr

H∗r
− lnHr

H∗r
− T

T ∗
+ ln

T

T ∗
) =: a63G63

D
′

7 =
(

1− I∗T
IT

)
I
′

T =
(

1− I∗T
IT

)
(qρI − (ϕ+ µ)IT ) = (ϕ+ µ)I∗T

(
1− I∗T

IT

)(
I

I∗
− I∗T
IT

)
=(ϕ+ µ)T ∗

(
I

I∗
− IT
I∗T
− I∗T
IT

I

I∗
+ 1

)
≤ (ϕ+ µ)I∗T ( I

I∗
− IT
I∗T
− lnI

∗
T

IT

I

I∗
)

≤(φ+ µ)T ∗( I
I∗
− ln I

I∗
− T

T ∗
+ ln

T

T ∗
) =: a75G75

D
′

8 =
(

1− R∗

R

)
R
′ = (1− R∗

R
(γ(1− δ)Lr + φT + ϕIT − (κλ+ µ)R)

=
(

1− R∗

R

)
(γ(1− δ)Lr + φT + ϕIT − κλR−

(
ρI∗ + γ(1− δ)L

∗
r

R∗
+ φ

T ∗

R∗
+ ϕ

I∗T
R∗
− κλ∗)R

)
=ρI∗

(
I

I∗
− ln I

I∗
+ ln

R

R∗
− R

R∗

)
+ γ(1− δ)L∗r

(
1− R

R∗
− Lr
L∗r

R∗

R
+ Lr
L∗r

)

+ φT ∗
(

1− R

R∗
+ ϕI∗T (1− R

R∗
− T

T ∗
R∗

R
+ T

T ∗

)
+ κI∗R∗

(
R

R∗
− 1− R

R∗
I

I∗
+ I

I∗

)
≤ρI∗

(
I

I∗
− ln I

I∗
+ ln

R

R∗
− R

R∗

)
+ γ

(
1− δ)L∗r(−

R

R∗
− lnLr

L∗r

R

R∗
+ Lr
L∗r

)

+ φT ∗
(
− R

R∗
− ln T

T ∗
R∗

R
+ T

T ∗

)
+ ϕI∗T

(
− R

R∗
− lnIT

I∗T

R∗

R
+ IT
I∗T

)

+ κI∗R∗
(
R

R∗
− 2− ln R

R∗
I

I∗
+ I

I∗

)
≤ρI∗

(
I

I∗
− ln I

I∗
+ ln

R

R∗
− R

R∗

)
+ γ(1− δ)L∗r

(
− R

R∗
+ ln

R

R∗
− lnLr

L∗r
+ Lr
L∗r

)

+ φT ∗
(
− R

R∗
+ ln

R

R∗
− ln T

T ∗
+ T

T ∗

)
+ ϕI∗T

(
− R

R∗
+ ln

R

R∗
− lnIT

I∗T
+ IT
I∗T

)

+ κI∗R∗
(
R

R∗
− 2− ln R

R∗
I

I∗
+ I

I∗

)
= : a84G84 + a86G86 + a87G87 + a85aG85a + a85bG85b

Where, a15 = a31 = σV ∗λ∗, a21 = θ,a25 = a32 = S∗λ∗, a38 = κR∗λ∗, a35 = (S∗ + σV ∗ +

κR∗)λ∗, a43 = αε(1 − p)H∗r , a54 = γδL∗r, a53 = α(1 − ε)(1 − p)H∗r , a63 = (φ + µ)T ∗,

a75 = (ϕ+ µ)I∗T , a84 = ρI∗, a86 = γ(1− δ)L∗r, a87 = ϕIT , a85a = φT ∗, a85b = κI∗R∗ and

all other aij = 0

With the constants aij above and the matrix A = [aij] for i, j = 1, ..., 8, 5a, 5b, we

construct the directed graph G(A) as Figure 4.2 below.
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Figure 4.2: The digraph G(A) for dynamical system (4.1)-(4.8).

The associated weighted digraph G(A) (figure 4.2)has eight vertices. Along the cycles in

figure 4.2:

G35 +G53 =
(
I
I∗
− Hr

H∗r
+ lnHr

H∗r
− ln I

I∗

)
+
(
− I
I∗

+ ln I
I∗
− Hr

H∗r
+ Hr

H∗r

)
= 0 and

G35 +G43 +G54 =
(
I
I∗
− Hr

H∗r
+ lnHr

H∗r
− ln I

I∗

)
+
(
−Lr

L∗r
+ lnLr

L∗r
− lnHr

H∗r
+ Hr

H∗r

)
+
(
− Ir

I∗r
+ ln Ir

I∗r
− lnLr

L∗r
+ Lr

L∗r

)
= 0.

And the other cycles ∑Gij ≤ 0 in figure 4.2, if V
V ∗

, S
S∗

, R
R∗
≤ 1 and Hr

H∗r
≤ I

I∗
. By

Proposition 1.3 of [109], there exists ci > 0, i = 1, . . . , 8 such that D = Σ8
i=1ciDi is a

Lyapunov function for the dynamical system (4.1)-(4.8). The relations between ci’s can

be derived from Theorems 3.3 and 3.4 of [109] such that:

a32 > 0 and d+(2) = 1 implies c3a32 = Σ8
k=1c2a2k

⇒ c3a32 = c2(a21 + a25)⇒ c3 = c2
a21 + a25

a32
.

a15 > 0 and d−(1) = 1 implies c1a15 = Σ8
k=1ckak1

⇒ c1a15 = c2a21 + c3a31 ⇒ c1 = c2
a21a32 + a31(a21 + a25)

(a32a15)
a43 > 0 and d−(4) = 1 implies c4a43 = Σ8

k=1ckak4

⇒ c4a43 = c5a54 ⇒ c4 = c5
a54

a43

a38 > 0 and d+(8) = 1 implies c3a38 = Σ8
k=1c8a8k

⇒ c3a38 = c8(a84 + a85a + a85b + a86)⇒ c8 = c3
a38

(a84 + a85a + a85b + a86)

⇒ c8 = c2
a38(a21 + a25)

a32(a84 + a85a + a85b + a86)
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a86 > 0 and d+(6) = 1 implies c8a86 = Σ8
k=1c6a6k

⇒ c8a86 = c6(a65 + a63)⇒c6 = c8
a76

(a65 + a63)

⇒c6 = c2
a86a38(a21 + a25)

a32(a65 + a63)(a84 + a85a + a85b + a86)

a87 > 0 and d+(7) = 1 implies c8a87 = Σ8
k=1c7a7k

⇒ c8a87 = c7a75 ⇒c7 = c8
a87

a75

⇒c7 = c2
a87a38(a21 + a25)

a75a32(a84 + a85a + a85b + a86)

Therefore, D = c1D1 + c2D2 + c3D3 + c4D4 + c5D5 + c6D6 + c7D7 + c8D8 is a Lyapunov

function for the dynamical system (4.1)− (4.8). Therefore, E∗ is globally asymptotically

stable in the interior of Ω when Reff > 1, V
V ∗

, S
S∗

, R
R∗
≤ 1 and Hr

H∗r
≤ I

I∗
.

4.4 Conclusion

This chapter presents a deterministic model for the dynamics of tuberculosis Mathe-

matical model with interventions: vaccination, chemoprophylaxis and therapeutics treat-

ments. The total population is divided in to eight compartments. We found that the

effective reproduction number of the dynamical system (4.1)-(4.8) is

Reff = cω
(
σψµ+(1−ψ)µ+θ

µ+θ

)
αε(1−p)δγ+α(1−ε)(1−p)(µ+γ)

(µ+α)(µ+γ)(µ+ρ+d) . We have recognized the existence of

the disease free equilibrium point and endemic equilibrium point of the dynamical sys-

tem. We proved that the disease free equilibrium point is locally asymptotically stable if

Reff < 1 and globally asymptotically stable if the effective reproduction numberReff < 1.

We also proved the local stability of the endemic equilibrium point and also its global

stability using a Liapunov function.
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Chapter 5

Spread and Control of Drug

Sensitive and Multi-Drug Resistance

Tuberculosis in Ethiopia

Abstract

In this chapter we formulated a nonlinear dynamical system to study the dynamics of a

two-strain tuberculosis epidemic in Ethiopia (5.1)-(5.10). We proved that the solution of

the dynamical system (5.1)-(5.10) is positive and bounded. We found that the dynamical

system (5.1)-(5.10) has disease free and endemic equilibrium points. We proved that the

local and global stability of disease free equilibrium point and endemic equilibrium point.

We found the effective reproduction number of the dynamical system. Also, the effective

reproduction number of the dynamical system (5.1)-(5.10) which experience drug sensitive

strain and the effective reproduction number of the dynamical system (5.1)-(5.10) which

experience multi drug resistance strain.

5.1 Introduction

Tuberculosis is among the most ancient diseases. German Microbiologist Robert Koch dis-

covered the causative organism Mycobacterium tuberculosis on 24th March 1882. World
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Health Organization (WHO) declared tuberculosis as global epidemic in 1993 [12, 14].

The lifetime risk of TB reactivation for a person with documented Latent Tuberculosis

Infection (LTBI) is estimated to be 5%-10%, with the majority developing TB disease

within the first five years after initial infection the risk of developing TB disease follow-

ing infection depends on several factors [12, 22]. There is a huge TB-latent human; this

increased its average probability of re-activation due to the emergence and growth HIV

and TB drug-resistant strains [12]. One of the biggest health challenges facing the world

is tied in to the dramatic increases in the levels of drug resistance TB, particular in hos-

pital settings [12, 29]. In 2016, the World Health Organization (WHO) reports roughly

9.4 million new cases (incidence) per year, an active-TB prevalence of 14 million, and

1.6 to 1.9 million deaths per year, a number that includes 400,000 deaths coming from

HIV positive individuals each year. Most active-TB cases are concentrated in South East

Asia, African and Western Pacific regions [12, 39]. In Ethiopia there were in average of

177 TB cases per 100,000 TB in 2016 [8, 39, 40, 42].

The emergence and re-emergence of infectious diseases have become a significant world-

wide problem. Proper understanding of transmission mechanisms of diseases caused by

existing and new pathogens may facilitate devising prevention tools. Prevention tools

against transmissions, including vaccines and drugs, need to be developed at a similar

pace to that of the microbes. Implementation and proper use of these sophisticated tools

against the microbes is another challenge [13]. Tuberculosis is one of a highly infectious

diseases caused by infection with the bacteria mycobacterium tuberculosis and it is an

airborne disease and so it is primarily transmitted through the respiratory route [30, 29].

Currently, WHO recommends that, the countries use three major categories of health

interventions for TB prevention: treatment of LTBI; prevention of transmission of My-

cobacterium tuberculosis through infection control; and vaccination of children with the

Bacille Calmette-Guérin (BCG) vaccine. In 2016, 154 countries reported providing BCG

vaccination as a standard part of these rogrammes, of which 111 reported coverage above

90% [39]. Results of field trials of the BCG vaccine have differed widely, some indicating

protection rates as high as 70% to 80%, others indicating the vaccine was completely

ineffective in preventing TB [104].

Drug Susceptibility Testing (DST) is very important to provide information about which
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drugs a person is resistant. Treatment of tuberculosis disease is not simple and Drug-

Susceptible Tuberculosis (DS-TB) requires a multiple drug regimen taken for at least

six months. But the treatment will only be successful if the drugs are taken exactly

as required for the entire length of time [39]. The currently recommended treatment

for cases of drug-susceptible TB must be faithfully carried out over 6-9 months regimen

of four first-line drugs: isoniazid, rifampicin, ethambutol and pyrazinamide and is a

source of concern due the fact that a number of TB-active individuals do not complete

treatment giving rise to the emergence of drug resistance TB strains [12, 39]. Treatment

for Rifampicin-Resistant TB (RR-TB) and multidrug-resistant tuberculosis (MDR-TB)

is longer, and requires more expensive and more toxic drugs [4, 39].

Multi-Drug-Resistant (MDR) tuberculosis is a form of tuberculosis caused by bacteria

that do not respond to, at least, isoniazid and rifampicin, which are the two most pow-

erful, standard anti-tuberculosis drugs [11, 22, 104]. According to the World Health

Organization (WHO) global TB report in 2017, it is estimated that there will be 490,000

new cases of multi-drug resistant tuberculosis (MDR-TB) in 2016, in addition, 110,000

new patients who resistant to rifampicin meet the treatment conditions of multi drug

resistance tuberculosis [39, 52]. A combination of poor compliance and poor medical

supervision or when the anti-TB drugs are mismanaged (incomplete course of treatment)

or misused (wrong dose or time length to complete the drugs) can result multi-drug re-

sistance. However some acquire Multi-Drug Resistant Tuberculosis (MDR-TB) by being

infected with a multi-drug resistant strain. MDR-TB is transmitted in the same way

as the normal drug sensitive strain [22, 52, 65]. Drug-resistant TB has a higher mortal-

ity rate, among them, multi-drug resistant tuberculosis (MDR-TB) is more prominent,

and has become another new serious problem [52]. Multi-Drug-Resistant Tuberculosis

(MDR-TB) treatment regimens are significantly longer, cause serious side effects and

are very expensive. The latest data reported to WHO show a treatment success rate

for Multi-Drug Resistant Tuberculosis (MDR-TB) of 54%, globally, reflecting high rates

of loss to follow-up, unevaluated treatment outcomes and treatment failure [39, 65] and

TB treatment outcomes in Ethiopia have been assessed only in small and fragmented

observational studies [86].

In this chapter we present a non-linear mathematical model to study the transmission
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dynamics and control of tuberculosis in Ethiopia which describes the infectious disease

of two strains tuberculosis. The interventions: vaccination, screening and treatments

are incorporated in our model. The structure of the chapter is described as follows: In

section 5.2 we introduce the model assumption, flow chart of the model, develop the

corresponding dynamical system and calculate effective reproduction number. In section

5.3 we investigate the positivity and boundedness of the solution for the dynamical system

(5.1)-(5.10). Moreove, we showed that the existence of disease free equilibrium point and

its local and global stability. In section 5.4 the existence of endemic equilibrium points

(the drug-sensitive only equilibrium point, the drug-resistance only equilibrium point and

the endemic equilibrium that both strains are co-exist) are analyzed and proved their local

and global stability. Finally, in section 5.5 we gave the conclusion for the work.

5.2 Model Assumptions and Formulation

In this section, we introduce a deterministic TB model by disaggregating the mycobac-

terium tuberculosis in to two strains (DS-TB, MDR-TB). The total population N(t) is

divided in to ten disjoint classes depending on the epidemiological status of individuals

such as: Susceptible S(t), who have never exposed to any strain of the Mycobacterium

tuberculosis, Vaccinated V (t), who have taken BCG vaccine against mycobacterium tu-

berculosis, an early stage infected with high risk of developing active drug sensitive tu-

berculosis Hs(t) and Later(Long) stage infected with low risk of developing active drug

sensitive tuberculosis Ls(t), Infectious individuals with drug sensitive tuberculosis Is(t),

Latently infected individuals with multi-drug resistant tuberculosis E(t), Infectious indi-

viduals with multi-drug resistant tuberculosis Ir(t), Screened Early latently infected with

drug sensitive tuberculosis Ts(t), Screened latently infected with multi-drug resistant

tuberculosis Tr(t) and Recovered individuals R(t).

Assume that individuals are recruited into the population by a constant rate Λ with the

proportions ψ of which are vaccinated to protect them against tuberculosis infection.

Furthermore, that the vaccine has a waning effect over time (after a time 1
θ

vaccinated in-

dividuals become susceptible again) and reduces due to expiration of duration of vaccine

efficacy. We assume that vaccinated individuals may infect with the rate of inefficacy of
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vaccine σ ∈ [0, 1]. Susceptible population increases due to the coming in of new births

not vaccinated against the infection and those who were vaccinated but lose their immu-

nity. When some susceptible & vaccinated individuals come into contact with infectious

individuals, they get infected and progress to latently infected classes of drug susceptible

and multi-drug resistant tuberculosis at a force of infection rates λs & σλs, and λr & σλr

respectively where λi = cωi
Ii

N
, where i = s, r and ωi is the probability that an individual

is infected by one infectious individual, and c is the number of effective contacts.

Individuals leave the high risk latently drug sensitive TB class at the rate α of which

the proportion p have a chance be screened and the remaining proportion enters to long

latent with drug sensitive TB or develop active TB . The proportion ε and (1 − ε) of

individuals of the early latent/exposed individuals for drug sensitive tuberculosis who do

not get chance for screened will go to Ls and I respectively at the rate α. Thus, the

proportion p, ε(1− p) and (1− ε)(1− p) of individuals in the class Hs are transferred to

classes Ts, Ls and Is respectively at a rate α. Individual leaves class Ls at the rate γ in

which, the proportion η goes to class Is and; the remaining proportion (1 − η) recovers

naturally and enter to recovered class R.

Individuals in Hs and, Ls can also be infected by MDR-TB (primary infection) if there

is effective contact with individuals in Ir class. Individuals leave Is class at the rates ρs
that the proportion q of individuals in infectious classes of drug susceptible tuberculosis

progress to the recovered class while the remaining (1− q) proportion of individuals with

active drug sensitive TB may develop MDR-TB because of improper treatment .

The proportion ν of the latently infected multi-drug resistant tuberculosis are screened

for treatment and the remaining proportion developed active drug resistant tuberculosis

and leaves E class at the rate of δ. Individual in Ir class recovers at the rate ρr and

goes to R class. Individuals leave the screened classes Ts and Tr at the rates φ, and ϕ

respectively, and go to recovered class.

Due to the nature of the disease, the infection will only kill individuals whose TB pro-

gresses to the infectious stage. Moreover, individuals in the recovered class are temporar-

ily recovered. Soon they revert back to the latently infected classes Hs and E , after

been re-infected by either drug sensitive or multi-drug resistant strain at the rate κλs
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and κλr respectively, where κ is the reduction in susceptibility due to prior endogenous

infection of tuberculosis. We assume that each class conforms to natural death at the

rate µ while infectious individuals in Is and Ir are die due to TB diseases at the rate ds
and dr respectively. State variables and parameters in the dynamical system listed in the

following table.

Table 5.1: Symbols and their description for state vari-

ables and parameters in the dynamical system (5.1)-

(5.10)

Symbol Description

V Vaccinated individuals against tuberculosis disease.

S Susceptible individuals for the disease

Hs Early latently infected with drug sensitive tuberculosis

Ls Long latently infected with drug sensitive tuberculosis

Is Infectious individuals with drug sensitive tuberculosis

Ts Screened Early latently infected with drug sensitive tuberculosis

E Latently infected with multi-drug resistant tuberculosis

Ir Infectious individuals with multi-drug resistant tuberculosis

Tr Screened Latently infected with multi-drug resistant tuberculosis

R Recovered Individuals

Λ Recruitment of population

ψ Proportions new born vaccinated

µ Natural death rate

σ The rate of inefficacy of vaccine individuals

θ The rate of vaccine waning

λi, i = s, r Force of infection (s =DS strain, r =MDR strain)

ωi, i = s, r Probability of acquiring TB infections per contact with one

infectious individual(s =DS strain, r =MDR strain)

c Number of effective contacts susceptible or vaccinated individuals makes with

infectious individuals.
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α The rate of progression of individuals from early latently infected with DS-

TB.

di, i = s, r Death rate due to the disease (s = DS strain, r =MDR strain)

p Proportion of latently infected DS-TB at early stage for treatment

ε Proportion of individuals who do not get chance for screened at Hs and

will go to Ls class.

φ Rate of individuals move from Ts to R

q Proportion of infectious individuals with DS-TB who enters to recovered class.

γ Progression rate from Long latently infected with DS-TB strain.

δ Progression rate from latency MDR-TB.

ϕ Rate of individuals move from Tr to R

η The portion of Ls enter in to Is
ν The portion of E enter in to Ir
ρi, i = s, r The recovery rate infectious individuals (s =DS strain, r =MDR strain).

κ Acquired immunity due to previous treatment.

Based on the above assumptions we do have the following flow chart:

Figure 5.1: Flow Chart of the Dynamical System (5.1)-(5.10)of a two strain tuberculosis
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The corresponding dynamical system of the above flow chart is

dV

dt
= ψΛ− (σ(λs + λr) + θ + µ)V (5.1)

dS

dt
= (1− ψ)Λ + θV − (λs + λr + µ)S (5.2)

dHs

dt
= λs(σV + S + κR)− (α + λr + µ)Hs (5.3)

dLs
dt

= εα(1− p)Hs − (γ + λr + µ)Ls (5.4)
dIs
dt

= ηγLs + α(1− ε)(1− p)Hs − (ρs + µ+ ds)Is (5.5)
dTs
dt

= αpHs − (φ+ µ)Ts (5.6)
dE

dt
= λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs − (δ + µ)E (5.7)

dIr
dt

= (1− ν)δE − (ρr + µ+ dr)Ir (5.8)
dTr
dt

= νδE − (ϕ+ µ)Tr (5.9)
dR

dt
= qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − (κ(λs + λr) + µ)R (5.10)

With the total population at a given time t is

N(t) = S(t) + V (t) +Hs(t) + Ls(t) + Ts(t) + Is(t) + E(t) + Tr(t) + Ir(t) +R(t)

5.3 Basic Properties of the Model

5.3.1 Positivity of Solutions of the Dynamical System

Theorem 5.1. Let the initial data for the model (5.1)−(5.10) be V (0) > 0, S(0) >

0, Hs(0) > 0, Ls(0) > 0, Is(0) > 0, Ts(0) > 0, E(0) > 0, Ir(0) > 0, Tr(0) > 0 and R(0) > 0

. Then, the solutions V (t), S(t), Hs(t), Ls(t), Is(t), Ts(t), E(t), Ir(t), Tr(t) and R(t) of the

model (5.1)−(5.10) will be remain positive for all time t > 0.

Proof. Let t̄ = sup{t > 0 : V (0) > 0, S(0) > 0, Hs(0) > 0, Ls(0) > 0, Is(0) > 0, Ts(0) >

0, E(0) > 0, Ir(0) > 0, Tr(0) > 0 and R(0) > 0t ∈ [0, t]}.

From the equation (5.1) of the system (5.1)−(5.10): dV
dt

= ψΛ− (σ (λs + λr) + θ + µ)V

We can be rewrite as: dV
dt

+ (σ (λs + λr) + θ + µ)V = ψΛ
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Multiply both sides by e

[
θt+µt+

t̄∫
0
σ(λs+λr)(τ)dτ

]

⇔ dV

dt
e

[
θt+µt+

t̄∫
0
σ(λs+λr)(τ)dτ

]
+ (σ (λs + λr) (t) + θ + µ)V (t) e

[
θt+µt+

t̄∫
0
λ(v)dv

]

= ψΛe

[
θt+µt+

t̄∫
0
σ(λs+λr)(τ)dτ

]

⇔ d

dt

V (t) e

[
θt+µt+

t̄∫
0
σ(λs+λr)(τ)dτ

]− V (0)

=
t̄∫
0

ψΛe

[
θt+µt+

w∫
0
σ(λs+λr)(τ)dτ

]
dt

⇔ V
(
t̄
)
e

{
µt̄+θt̄+

t̄∫
0
σ(λs+λr)(τ)dτ

}
− V (0) =

t̄∫
0

ψΛe

{
µt+θt+

w∫
0
σ(λs+λr)(τ)dτ

}
dt

⇔ V
(
t̄
)

= V (0)Q1 +Q1

t̄∫
0

ψΛe

{
µt+θt+

w∫
0

(σ(λs+λr)(τ))dτ
}
dt > 0

where Q1 = e
−

{
µt+θt+

t̄∫
0
σ(λs+λr)(τ)dτ

}
> 0

From the equation (5.2) of the system (5.1)−(5.10): ds
dt

= (1− ψ) Λ+θV −(λs + λr + µ)S

We can be rewrite as: ds
dt

+ (λs + λr + µ)S = (1− ψ) Λ + θV

Multiply both sides by e

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]

⇔ dS

dt
e

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]
+ ((λs + λr) (t) + µ)S (t) e

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]

= [(1− ψ) Λ + θV ] e

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]

⇔ d

dt

S (t) e

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]− S (0)

=
t̄∫
0

((1− ψ) Λ + θV (t)) e

[
µt+

w̄∫
0

(λs+λr)(τ))dτ
]
dt
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⇔ S
(
t̄
)
e

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]
− S (0) =

t̄∫
0

((1− ψ) Λ + θV (t)) e

[
µt+

w̄∫
0

(λs+λr)(τ))dτ
]
dt

⇔ S
(
t̄
)

= S (0)Q2 +Q2

t̄∫
0

((1− ψ) Λ + θV (t)) e

[
µt+

w̄∫
0

(λs+λr)(τ))dτ
]
dt > 0

where Q2 = e
−

[
µt+

t̄∫
0

(λs+λr)(τ))dτ

]
> 0

From the equation (5.3) of the system (5.1)−(5.10): dHs

dt
= λsS + σλsV + κλsR −

(α + λr + µ)Hs

We can be rewrite as: dHs

dt
+ (α + λr + µ)Hs = λsS + σλsV + κλsR

Multiply both sides by e

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]

⇔ dHs

dt
e

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
+ (α + λr + µ)Hse

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]

= (λsS + σλsV + κλsR) e

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]

⇔ d

dt

Hs (t) e

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]−Hs (0)

=
t̄∫
0

(λsS + σλsV + κλsR) e

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
dt

⇔ Hs

(
t̄
) αt̄+ µt̄+

t̄∫
0

λr (τ) dτ

−Hs (0)

=
t̄∫
0

(λsS (t) + σλsV (t) + κλsR (t))

αt̄+ µt̄+
t̄∫
0

λr (τ) dτ

 dt
⇔ Hs (t) = Hs (0)Q3 +Q3

t̄∫
0

(λsS (t) + σλsV (t) + κλsR (t))

αt̄+ µt̄+
t̄∫
0

λr (τ) dτ


 dt > 0

where Q3 = e
−

[
αt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
> 0

From the equation (5.4) of the system (5.1)−(5.10): dLs

dt
= αε (1− p)Hs−(λr + γ + µ)Ls

We can be rewrite as: dLs

dt
+ (λr + γ + µ)Ls = αε (1− p)Hs
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Multiply both sides by = e

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]

⇔ dLs
dt

e

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
+ (λr + γ + µ)Lse

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]

= αε (1− p)Hs

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]

⇔ d

dt

Ls (t) e

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]− Ls (0)

=
t̄∫
0

αε (1− p)Hse

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
dt

⇔ Ls
(
t̄
)
e

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
− Ls (0) =

t̄∫
0

αε (1− p)Hse

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
dt

⇔ Ls (t) = Ls (0)Q4 +Q4

t̄∫
0

αε (1− p)Hse

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
dt > 0

where Q4 = e
−

[
γt̄+µt̄+

t̄∫
0
λr(τ)dτ

]
> 0

From the equation (5.5) of the system (5.1)−(5.10): dIs

dt
= γηLs + α (1− ε) (1− p)Hs −

(ρs + µ+ ds) Is
We can be rewrite as: dIs

dt
+(ρs + µ+ ds) Is = γηLs+α (1− ε) (1− p)Hs+α (1− ε) (1− p)Hs

Multiply both sides by e[ρs t̄+ds t̄+µt̄]

⇔ dIs
dt
e[ρs t̄+ds t̄+µt̄] + (ρ+ µ+ d) Ie[ρs t̄+ds t̄+µt̄]

= [γηLs + α (1− ε) (1− p)Hs] e[ρs t̄+ds t̄+µt̄]

⇔ d

dt

[
Is (t) e[ρs t̄+ds t̄+µt̄]

]
− Is (0) = [γηLs + α (1− ε) (1− p)Hs] e[ρs t̄+ds t̄+µt̄]

⇔ Is
(
t̄
)
e[ρs t̄+ds t̄+µt̄] − Is (0) =

t̄∫
0

[γηLs + α (1− ε) (1− p)Hs] e[ρt̄+ds t̄+µt̄] dt

⇔ Is (t) = Is (0)Q5 +Q5

t̄∫
0

[γηLs + α (1− ε) (1− p)Hs] e[ρs t̄+ds t̄+µt̄] dt > 0

where Q5 = e−[ρs t̄+ds t̄+µt̄] > 0
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From the equation (5.6) of the system (5.1)−(5.10): dTs

dt
= αpHs − (φ+ µ)Ts

We can be rewrite as:dTs

dt
+ (φ+ µ)Ts = αpHs

Multiply both sides by e[φt̄+µt̄]

⇔ dTs
dt
e[φt̄+µt̄] + (φ+ µ)Tse[φt̄+µt̄] = αp Hse

[φt̄+µt̄]

⇔ d

dt

[
Ts (t) e[φt̄+µt̄]

]
− Ts (0) =

t̄∫
0

αp Hse
[φt̄+µt̄] dt

⇔ Ts
(
t̄
)
e[φt̄+µt̄] − Ts (0) =

t̄∫
0

αp Hse
[φt̄+µt̄] dt

⇔ Ts
(
t̄
)

= Ts (0)Q6 +Q6

t̄∫
0

αp Hse
[φt̄+µt̄] dt > 0 where Q6 = e−[φt̄+µt̄] > 0

From the equation (5.7) of the system (5.1)−(5.10):

dE

dt
= λr (S +Hs + Ls + σV + κR)− (δ + µ)E

We can be rewrite as: dE
dt

+ (δ + µ)E = λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
Multiply both sides by e[δt̄+µt̄]

⇔ dE

dt
e[δt̄+µt̄] + (δ + µ)Ee[δt̄+µt̄] = λr (S +Hs + Ls + σV + κR) e[δt̄+µt̄]

⇔ d

dt

[
E (t) e[δt̄+µt̄]

]
− E (0)

=
t̄∫
0

[λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs] e[δt̄+µt̄] dt

⇔ E
(
t̄
)
e[δt̄+µt̄] − E (0)

=
t̄∫
0

[λr (t) (S +Hs + Ls + σV + κR) + (1− q) ρsIs] e[δt̄+µt̄] dt

⇔ E
(
t̄
)

= E (0)Q7 +Q7

t̄∫
0

[λr (t) (S +Hs + Ls + σV + κR) + (1− q) ρsIs] exp
[
ϕt̄+ µt̄

]
dt > 0

where Q7 = e−[δt̄+µt̄] > 0

From the equation (5.8) of the system (5.1)−(5.10): dIr

dt
= (1− ν) δE − (ρr + µ+ dr) Ir

We can be rewrite as: dIr

dt
+ (ρr + µ+ dr) Ir = (1− ν) δE
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Multiply both sides by e[ρr t̄+µt̄+dr t̄]

⇔ dIr
dt
e

[
µt+

t̄∫
0
λ(v)dv

]
+ (λ (t) + µ) Ir (t) e[ρr t̄+µt̄+dr t̄]

= [(1− ν) δE ] e[ρr t̄+µt̄+dr t̄]

⇔ d

dt

[
Ir (t) e[ρr t̄+µt̄+dr t̄]

]
− Ir (0) =

t̄∫
0

[(1− ν) δE ] e

[
µt+

t̄∫
0
λ(v)dv

]
dt

⇔ Ir
(
t̄
)
e[ρr t̄+µt̄+dr t̄] − Ir (0) =

t̄∫
0

[(1− ν) δE ] e[ρr t̄+µt̄+dr t̄]dt

⇔ Ir
(
t̄
)

= Ir (0)Q8 +Q8

t̄∫
0

[(1− ν) δE ] e[ρr t̄+µt̄+dr t̄]dt > 0

where Q8 = e−[ρr t̄+µt̄+dr t̄] > 0

From the equation (5.9) of the system (5.1)−(5.10): dTr

dt
= νδE − (ϕ+ µ)Tr

We can be rewrite as:dTr

dt
+ (ϕ+ µ)Tr = νδE

Multiply both sides by e(ϕt̄+µt̄)

⇔ dTr
dt
e(ϕt̄+µt̄) + (λ (t) + µ)Tr (t) e

[
µt+

t̄∫
0
λ(v)dv

]
= [νδE ] e[ϕt̄+µt̄]

d

dt

[
Tr (t) e[ϕt̄+µt̄]

]
− Tr (0) =

t̄∫
0

[νδE ] exp
(
ϕt̄+ µt̄

)

⇔ Tr
(
t̄
)
e[ϕt̄+µt̄] − Tr (0) =

t̄∫
0

[νδE ] e[ϕt̄+µt̄]

⇔ Tr
(
t̄
)

= Tr (0)Q9 +Q9

t̄∫
0

[νδE] e[ϕt̄+µt̄] > 0

where Q9 = e−[ϕt̄+µt̄] > 0

From the equation (5.10) of the system (5.1)−(5.10):

dR

dt
= qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − (κ (λs + λr) + µ)R

We can be rewrite as:

dR

dt
+ (κ (λs + λr) + µ)R = qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr

87



Multiply both sides by e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]

⇔ dR

dt
e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]
+ (κ (λs + λr) + µ)R (t) e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]

= [qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr ] e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]

⇔ d

dt

R (t) e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]−R (0)

=
t̄∫
0

[qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr ] e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]
dt

⇔ R
(
t̄
)
e

[
µt̄+κ

t̄∫
0

(λs+λr)(τ)dτ

]
−R (0)

=
t̄∫
0

[qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr ] e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]
dt

⇔ R
(
t̄
)

= R (0)Q10 +Q10

t̄∫
0

[qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr ]

e

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]
dt > 0

where Q10 = e
−

[
µt+κ

t̄∫
0

(λs+λr)(τ)dτ

]
> 0

Therefore all of the state variables of our model system (5.1)−(5.10) are positive for all

t > 0 given any positive initial conditions.

5.3.2 Boundedness of Solutions of the Dynamical System

Theorem 5.2. The dynamical system (5.1)−(5.10) is positively invariant in the closed

invariant set Ω = {(V, S,Hs, Ls, Is, Ts, E, Ir, Tr, R) ∈ R10
+ : N ≤ Λ

µ
}.

Proof. Consider the biologically feasible region, Ω and observe that the rate of change

of the total population obtained by adding all the equations (5.1)−(5.10) of the model.
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dN
dt

= Λ − µN − (dsIs + drIr). For N > Λ
µ

. we do have dN
dt
≤ 0 . Furthermore using a

standard comparison theorem dN
dt
≤ Λ− µN it follows that

∫ dN
Λ−µN ≤

∫
dt =⇒ −ln(Λ−

µN) ≤ µ(t+ c) where c is a constant ⇐⇒ −µN ≥ Ae−µt , where A = e−cµ is a constant.

And then applying the initial condition N(0) we do have Λ− µN(0) ≥ A that is N(0) ≤
Λ
µ

. Then from the inequality Λ − µN ≥ Ae−µt and taking A = Λ − µN(0), we get

N(t) ≤ Λ
µ
− A

µ
e−µt ≤ Λ

µ−N(0)e
−µt. For time t > 0 we do have lim→∞N(t) ≤ N(0)e(−µt)−

Λ
µ
e−µt + Λ

µ
≤ Λ

µ
(Since, N(0) ≤ Λ

µ
. Hence if N(0) ≤ Λ

µ
, as t → ∞ the population size

N(t)→ Λ
µ

which implies that 0 ≤ N(t) ≤ Λ
µ

.

From the equation (5.1) of the system (5.1)−(5.10): dV
dt

= ψΛ− (σ (λs + λr) + θ + µ)V

If we add (σ(λs + λr)V to the right side, we get: dV
dt
≤ ψΛ− (θ + µ)V

Using a standard comparision theorem:
∫ dV

ψΛ− (θ + µ)V ≤
∫
dt⇒ − 1

(θ + µ) ln (ψΛ− (θ + µ)V ) ≤ t+ c where c is a constant

⇒ ψΛ− (θ + µ)V ≥ Be−(θ+µ)t where B = e−c(θ+µ)is a constant

⇒ V ≤ ψΛ
(θ + µ) −

B
(θ + µ)e

−(θ+µ)t

By applying the initial condition V(0):

ψΛ− (θ + µ)V ≥ Be−(θ+µ)t ⇒ V (0) ≤ ψΛ
(θ + µ) −

B
(θ + µ) ≤

ψΛ
(θ + µ)

Then from the inequality ψΛ−(θ + µ)V ≥ Be−(θ+µ)t , and taking B = ψΛ−(θ + µ)V (0)

we can get,

V (t) ≤ ψΛ
(θ + µ) −

B
(θ + µ)e

−(θ+µ)t ≤ ψΛ
(θ + µ) −

(
ψΛ

(θ + µ) − V (0)
)
e−(θ+µ)t

V (t) ≤ V (0) e−(θ+µ)t + ψΛ
(θ + µ)

(
1− e−(θ+µ)t

)
V (t) ≤ V (0) e−(µ+θ)t + ψΛ

µ+ θ

(
1− e−(µ+θ)t

)
lim
t→∞

V (t) ≤ V (0) e−(µ+θ)t + ψΛ
µ+ θ

(
1− e−(θ+µ)t

)
lim
t→∞

V (t) ≤
(
V (0)− ψΛ

µ+ θ

)
e−(µ+θ)t + ψΛ

µ+ θ
≤ ψΛ
µ+ θ

Since, V (0) ≤ ψΛ
(θ + µ)

From the equation (5.2) of the system (5.1)−(5.10): ds
dt

= (1− ψ) Λ+θV −(λs + λr + µ)S

If we add (λs + λr)S to the right side, we get: dS
dt
≤ (1− ψ) Λ + θV − µS
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Using a standard comparision theorem:∫ dS

(1− ψ) Λ + θV − µS
≤
∫
dt⇒ − 1

µ
ln ((1− ψ) Λ + θV − µS) ≤ t+ c where where c is a constant

⇒ (1− ψ) Λ + θV − µS ≥ Ce−µt where C = e−cµtis a constant

⇒ S ≤ (1− ψ) Λ + θV

µ
− C
µ
e−µt

By applying the initial condition S(0):

S (t) ≤ (1− ψ) Λ + θV

µ
− C
µ
e−µt ⇒ S (0) ≤ (1− ψ) Λ + θV

µ
− C
µ
≤ (1− ψ) Λ + θV

µ

Then from the inequality (1− ψ) Λ + θV − µS ≥ Ce−µt , and taking C = (1− ψ) Λ +

θV − µS (0) we can get,

S (t) ≤ (1− ψ) Λ + θV

µ
− C
µ
e−µt ≤ (1− ψ) Λ + θV

µ
−
(

(1− ψ) Λ + θV

µ
− S (0)

)
e−µt

S (t) ≤ S (0) e−µt + (1− ψ) Λ + θV

µ

(
1− e−µt

)
S (t) ≤ S (0) e−µt + (1− ψ) Λ + θV

µ

(
1− e−µt

)
lim
t→∞

S (t) ≤ S (0) e−µt + (1− ψ) Λ + θV

µ

(
1− e−µt

)
lim
t→∞

S (t) ≤
(
S (0)− (1− ψ) Λ + θV

µ

)
e−µt + (1− ψ) Λ + θV

µ
≤ (1− ψ) Λ + θV

µ

Since, S (0) ≤ (1− ψ) Λ + θV

µ

From the equation (5.3) of the system (5.1)−(5.10): dHs

dt
= λsS + σλsV + κλsR −

(α + λr + µ)Hs

If we add (α + λr)Hs to the right side, we get: dHs

dt
≤ λ (S + σV + κR)− µHs

Using a standard comparision theorem:∫ dHs

(S + σV + κR)− µHs

≤
∫
dt

⇒ − 1
µ

ln ((S + σV + κR)− µHs) ≤ t+ c where c is a constant

⇒ (S + σV + κR)− µHs ≥ De−µt where D = e−cµtis a constant

⇒ Hs ≤
(S + σV + κR)

µ
− D
µ
e−µt

By applying the initial condition Hs(0):

Hs (t) ≤ (S + σV + κR)
µ

− D
µ
e−µt ⇒ Hs (0) ≤ (S + σV + κR)

µ
− D
µ
≤ (S + σV + κR)

µ
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Then from the inequality (S + σV + κR)−µHs ≥ De−µt and taking D = (S + σV + κR)−

µHs (0) we can get,

Hs (t) ≤ (S + σV + κR)
µ

− D
µ
e−µt ≤ (S + σV + κR)

µ
−
(

(S + σV + κR)
µ

−Hs (0)
)
e−µt

Hs (t) ≤ Hs (0) e−µt + (S + σV + κR)
µ

(
1− e−µt

)
lim
t→∞

Hs (t) ≤ Hs (0) e−µt + (S + σV + κR)
µ

(
1− e−µt

)
lim
t→∞

Hs (t) ≤
(
Hs (0)− (S + σV + κR)

µ

)
e−µt + (S + σV + κR)

µ
≤ (S + σV + κR)

µ

Since, Hs (0) ≤ (S + σV + κR)
µ

From the equation (5.4) of the system (5.1)−(5.10): dLs

dt
= αε (1− p)Hs−(λr + γ + µ)Ls

If we add (λr + γ)Ls to the right side, we get: dLs

dt
≤ αε (1− p)Hs − µLs

Using a standard comparision theorem:∫ dLs
αε (1− p)Hs − µLs

≤
∫
dt

⇒ − 1
µ

ln (αε (1− p)Hs − µLs) ≤ t+ c where c is a constant

⇒ αε (1− p)Hs − µLs ≥ Ee−µt where E = e−cµtis a constant

⇒ Ls ≤
αε (1− p)Hs

µ
− E
µ
e−µt

By applying the initial condition Ls(0):

Ls (t) ≤ αε (1− p) s
µ

− E
µ
e−µt ⇒ Ls (0) ≤ αε (1− p)Hs

µ
− E
µ
≤ αε (1− p)Hs

µ

Then from the inequality αε (1− p)Hs − µLs ≥ Ee−µt and taking E = αε (1− p)Hs −

µLs (0) we can get,

Ls (t) ≤ αε (1− p)Hs

µ
− E
µ
e−µt ≤ αε (1− p)Hs

µ
−
(
αε (1− p)Hs

µ
− Ls (0)

)
e−µt

Ls (t) ≤ Ls (0) e−µt + αε (1− p)Hs

µ

(
1− e−µt

)
Ls (t) ≤ Ls (0) e−µt + αε (1− p)Hs

µ

(
1− e−µt

)
lim
t→∞

Ls (t) ≤ Ls (0) e−µt + αε (1− p)Hs

µ

(
1− e−µt

)
lim
t→∞

Ls (t) ≤
(
Ls (0)− αε (1− p)Hs

µ

)
e−µt + αε (1− p)Hs

µ
≤ αε (1− p)Hs

µ

where Ls (0) ≤ αε (1− p)Hs

µ
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From the equation (5.5) of the system (5.1)−(5.10): dTs

dt
= αp Hs − (φ+ µ)Ts

If we add φTs to the right side, we get: dTs

dt
≤ αpHs − µTs

Using a standard comparision theorem:∫ dTs
αpHs − µTs

≤
∫
dt⇒ − 1

µ
ln (αpHs − µTs ) ≤ t+ c where c is a constant

⇒ αpHs − µTs ≥ Fe−µt where F = e−cµt is a constant

⇒ Ts ≤
αpHr

µ
− F
µ
e−µt

By applying the initial condition Ts(0):

Ts (t) ≤ αpHs

µ
− F

µ
e−µt ⇒ Ts (0) ≤ αpHs

µ
− F
µ
≤ αpHs

µ

Then from the inequality αpHs − µTs ≥ Fe−µt and taking F = αpHs − µT (0) we

can get,

T (t) ≤ αpHs

µ
− F
µ
e−µt ≤ αpHs

µ
−
(
αpHs

µ
− Ts (0)

)
e−µt

Ts (t) ≤ Ts (0) e−µt + αpHs

µ

(
1− e−µt

)
Ts (t) ≤ Ts (0) e−µt + αpHs

µ

(
1− e−µt

)
lim
t→∞

Ts (t) ≤ Ts (0) e−µt + αpHs

µ

(
1− e−µt

)
lim
t→∞

Ts (t) ≤
(
Ts (0)− αpHs

µ

)
e−µt + αpHs

µ
≤ αpHs

µ
since T (0) ≤ αpHs

µ

From the equation (5.6) of the system (5.1)−(5.10): dIs

dt
= γηLs + α (1− ε) (1− p)Hs −

(ρs + µ+ ds) Is
If we add (ρs + ds) Is to the right side, we get: dIs

dt
≤ γηLs + α (1− ε) (1− p)Hs − µI

Using a standard comparision theorem:∫ dIs
γηLs + α (1− ε) (1− p)Hs − µI

≤
∫
dt

⇒ − 1
µ

ln (γηLs + α (1− ε) (1− p)Hs − µIs ) ≤ t+ cwhere c is a constant

⇒ γηLs + α (1− ε) (1− p)Hs − µIs ≥ Ge−µtwhere G = e−cµtis a constant

⇒ Is ≤
γηLs + α (1− ε) (1− p)Hs

µ
− G
µ
e−µt

By applying the initial condition Is(0):

Is (t) ≤ γηLs + α (1− ε) (1− p)Hs

µ
− G

µ
e−µt

⇒ Is (0) ≤ γηLs + α (1− ε) (1− p)Hs

µ
− G
µ
≤ γηLs + α (1− ε) (1− p)Hs

µ
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Then from the inequality γηLs + α (1− ε) (1− p)Hs − µIs ≥ Ge−µt and taking G =

δγLs + α (1− ε) (1− p)Hs − µIs (0) we can get,

Is (t) ≤ γηLs + α (1− ε) (1− p)Hs

µ
− G
µ
e−µt

≤ γηLs + α (1− ε) (1− p)Hs

µ
−
(
γηLs + α (1− ε) (1− p)Hs

µ
− Is (0)

)
e−µt

Is (t) ≤ Is (0) e−µt + γηLs + α (1− ε) (1− p)Hs

µ

(
1− e−µt

)
Is (t) ≤ Is (0) e−µt + γηLs + α (1− ε) (1− p)Hs

µ

(
1− e−µt

)
lim
t→∞

Is (t) ≤ Is (0) e−µt + γηLs + α (1− ε) (1− p)Hs

µ

(
1− e−µt

)
lim
t→∞

Is (t) ≤
(
Is (0)− γηLs + α (1− ε) (1− p)Hr

µ

)
e−µt + γηLs + α (1− ε) (1− p)Hr

µ

≤ γηLs + α (1− ε) (1− p)Hs

µ
since Is (0) ≤ γηLs + α (1− ε) (1− p)Hs

µ

From the equation (5.7) of the system (5.1)−(5.10): dE
dt

= λr (S +Hs + Ls + σV + κR)+

(1− q) ρsIs − (δ + µ)E

If we add δE to the right side, we get: dE
dt
≤ λr (S +Hs + Ls + σV + κR)+(1− q) ρsIs−

µE

Using a standard comparision theorem:
∫ dE

λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs − µE
≤
∫
dt

⇒ − 1
µ

ln (λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs − µE ) ≤ t+ cwhere c is a constant

⇒ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs − µE ≥ He−µt where H = e−cµtis a constant

⇒ E ≤ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

− H

µ
e−µt

By applying the initial condition E(0):

E (t) ≤ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

− H

µ
e−µt

⇒ E (0) ≤ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

− H
µ

≤ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

Then from the inequality λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs−µE ≥ He−µt and
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taking H = λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs − µE (0) we have:

E (t) ≤λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

− H
µ
e−µt

≤λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

−
(
λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs

µ
− E (0)

)
e−µt

E (t) ≤E (0) e−µt + λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

(
1− e−µt

)
lim
t→∞

E (t) ≤ E (0) e−µt + λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

(
1− e−µt

)
lim
t→∞

E (t) ≤
(
E (0)− λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs

µ

)
e−µt

+ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

≤ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

since E (0) ≤ λr (S +Hs + Ls + σV + κR) + (1− q) ρsIs
µ

From the equation (5.8) of the system (5.1)−(5.10): dIr

dt
= (1− ν) δE − (ρr + µ+ dr) Ir

If we add (ρr + dr) Ir to the right side, we get: dIr

dt
≤ (1− ν) δE − µIr

Using a standard comparision theorem:
∫ dIr

(1− ν) δE − µIr
≤
∫
dt

⇒ − 1
µ

ln ((1− ν) δE − µIr ) ≤ t+ c where c is a constant

⇒ 1− ν)δE − µIr ≥ Je−µt where J = e−cµtis a constant

⇒ Ir ≤
(1− ν) δE − µIr

µ
− J
µ
e−µt

By applying the initial condition Ir(0):

Ir (t) ≤ (1− ν) δE − µIr
µ

− J

µ
e−µt ⇒ Ir (0) ≤ (1− ν) δE − µIr

µ
− J
µ
≤ (1− ν) δE − µIr

µ

Then from the inequality (1− ν) δE −µIr ≥ Je−µt and taking J = (1− ν) δE −µIr (0)
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we can get,

Ir (t) ≤(1− ν) δE
µ

− J
µ
e−µt ≤ (1− ν) δE

µ
−
(

(1− ν) δE
µ

− Ir (0)
)
e−µt

Ir (t) ≤Ir (0) e−µt + (1− ν) δE
µ

(
1− e−µt

)
lim
t→∞

Ir (t) ≤Ir (0) e−µt + (1− ν) δE
µ

(
1− e−µt

)
lim
t→∞

Ir (t) ≤
(
Ir (0)− (1− ν) δE

µ

)
e−µt + (1− ν) δE

µ
≤ (1− ν) δE

µ

since Ir (0) ≤ (1− ν) δE
µ

From the equation (5.9) of the system (5.1)−(5.10): dTr

dt
= νδE − (ϕ+ µ)Tr

If we add ϕTr to the right side, we get: dTr

dt
≤ νδE − µTr

Using a standard comparision theorem:∫ dTr
νδE − µTr

≤
∫
dt

⇒ − 1
µ

ln (νδE − µTr) ≤ t+ c where c is a constant

⇒ νδE − µTr ≥ Ke−µt where K = e−cµt is a constant

⇒ Tr ≤
νδE

µ
− K
µ
e−µt

By applying the initial condition Tr(0):

Tr (t) ≤ νδE

µ
− H

µ
e−µt ⇒ Tr (0) ≤ νδE

µ
− K
µ
≤ νδE

µ

Then from the inequality νδE − µTr ≥ Ke−µt and taking K = νδE − µTr (0) we can

get,

Tr (t) ≤νδE
µ
− K
µ
e−µt ≤ νδE

µ
−
(
νδE

µ
− Tr (0)

)
e−µt

Tr (t) ≤Tr (0) e−µt + νδE

µ

(
1− e−µt

)
lim
t→∞

Tr (t) ≤Tr (0) e−µt + νδE

µ

(
1− e−µt

)
lim
t→∞

Tr (t) ≤
(
Tr (0)− νδE

µ

)
e−µt + νδE

µ
≤ νδE

µ

since Tr (0) ≤ νδE

µ

From the equation (5.10) of the system (5.1)−(5.10):

dR

dt
= qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − (κ (λs + λr) + µ)R
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If we add κ (λs + λr)R to the right side, we get:

dR

dt
≤ qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR

Using a standard comparision theorem:
∫ dR

qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
≤
∫
dt

− 1
µ

ln (qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR ) ≤ t+ c where c is a constant

⇒ qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR ≥ Le−µt where L = e−cµt is a constant

⇒ R ≤ qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

− L
µ
e−µt

By applying the initial condition R(0):

R (t) ≤qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

− L
µ
e−µt

⇒ R (0) ≤qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

− L
µ

≤qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

Then from the inequality qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR ≥ Le−µt and

taking L = qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR− µR (0), we can get:

R (t) ≤qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

− F
µ
e−µt

≤qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

−
(
qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR

µ
−R (0)

)
e−µt

R (t) ≤R (0) e−µt + qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

(
1− e−µt

)
lim
t→∞

R (t) ≤R (0) e−µt + qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

(
1− e−µt

)
lim
t→∞

R (t) ≤
(
R (0)− qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR

µ

)
e−µt

+ qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

≤qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ

since R (0) ≤ qρsIs + ρrIr + γ (1− η)Ls + φTs + ϕTr − µR
µ
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Therefore all feasible solutions of the dynamical system with initial conditions in

Ω = {(V, S,Hs, Ls, Is, Ts, E, Ir, Tr, R) ∈ R10
+ : N ≤ Λ

µ
} do remain in Ω for all t > 0. That

is the set Ω is positively invariant.

5.3.3 Existence of Disease Free Equilibrium Point

The disease free equilibrium point of the dynamical system (5.1)−(5.10) is obtained by

setting dV
dt

= dS
dt

= dHs

dt
= dLs

dt
= dIt

dt
= dTs

dt
= dE

dt
= dIr

dt
= dTr

dt
= dR

dt
= 0 and since there is

no disease we do have Is = Ir = 0.

Let the disease free equilibrium (DFE) of the model (5.1)−(5.10) be denoted as:

E0 = (V 0, S0, H0
s , L

0
s, I

0
s , T

0
s , E

0, I0
r , T

0
r , R

0)

From equation (5.1) of the dynamical system, we have:

dV

dt
= 0⇒ ψΛ− (σ(λs + λr) + θ + µ)V = 0,⇒ V 0 = ψΛ

µ+ θ

From equation (5.2) of the dynamical system, we have:

dS

dt
= 0⇒ (1− ψ)Λ + θV − (λs + λr + µ)S = 0,

⇒ S0 = (1− ψ)Λ + θV 0

µ
= (1− ψ)(µ+ θ)Λ + θψΛ

µ(µ+ θ
= (θ + (1− ψ)µ)Λ

µ(µ+ θ)

Taking the cases when Is = Ir = 0, the equations dHs

dt
= dLs

dt
= dIs

dt
= dE

dt
= dIr

dt
= dTs

dt
=

dTr

dt
= dR

dt
= 0 and if we solve for the rest state variable then we find that Hs = Ls =

Ts = E = Tr = R = 0. Therefore, the disease free equilibrium point E0 of the dynamical

system (5.1)−(5.10) is given by:

E0 =
(
V 0, S0, H0

s , L
0
s, I

0
s , T

0
s , E

0, I0
r , T

0
r , R

0
)

=
(

ψΛ
(µ+ θ) ,

(θ + (1− ψ)µ)Λ
µ(µ+ θ) , 0, 0, 0, 0, 0, 0, 0, 0

)
.

5.3.4 The Effective Reproduction Number Reff and Basic Re-

production Number R0,

The average number of secondary infections caused by typical infected individual during

his entire period of infectiousness the dynamical system is obtained by taking the largest
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(dominant) eigenvalue (spectral radius) of the matrix FV −1:

FV −1 =
[
∂Fi(E0)
∂xj

] [
∂Vi(E0)
∂xj

]−1

with 1 ≤ i, j ≤ n

where Fi is the rate of appearance of new infection in compartment i, Vi is the transfer

of infections from one compartment i to another and E0 is the disease-free equilibrium

point. We rearrange the equations of model system (5.1)−(5.10) with the infected classes

Hs, Ls, Is, E and Ir first, susceptible class S(t) second, vaccination class, V (t) third,

and recovered class, R(t) last. Making use of the next generation operator method, we

compute the effective reproduction number Reff . The non-negative matrix F , of the new

infection terms, and the matrix V , of the transition terms associated with the model

system (5.1)−(5.10)are given respectively by:

Fi =



λs (S + σV + κR)

0

0

λr (S +Hs + Ls + σV + κR)

0


and

Vi =



(α + λr + µ)Hs

−αε(1− p)Hs + (λr + γ + µ)Ls
−γηLs − α(1− ε)(1− p)Hs + (ρs + µ+ ds)Is

−(1− q)ρsIs + (δ + µ)E

−(1− ν)δE + (ρr + µ+ dr)Ir


Now we find the Jacobean matrix of Fi and vi with respect to Hs, Ls, Is, E and Ir as in-

fected classes evaluated at the disease free equilibrium E0. Doing so we get the following:
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F =



0 0 cωs
(S0+σV 0)

N0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 cωr
(S0+σV 0)

N0


and

V =



(α + µ) 0 0 0 0

−αε(1− p) (γ + µ) 0 0 0

−α(1− ε)(1− p) −γη (ρs + µ+ ds) 0 0

0 0 −(1− q)ρs (δ + µ) 0

0 0 0 −(1− ν)δ) (ρr + µ+ dr)


Since detV = (α+µ)(γ+µ)(ρs+µ+ds)(δ+µ)(ρr+µ+dr) 6= 0 and then V is non-singular.

The inverse V −1 of the matrix V is given by: V −1 = 1
detV

Vadj where Vadj is the adjoint

matrix of the matrix V . And Vadj = [Cij]T where Cij = (−1)(i+j)Mij is cofactor of an

element vij of the matrix V and Mij is minor of an element vij of the matrix V .

Vadj =



c11 c21 c31 c41 c51

c12 c22 c32 c42 c52

c13 c23 c33 c43 c53

c14 c24 c34 c44 c54

c15 c25 c35 c45 c55


, where

c21 = c31 = c32 = c41 = c42 = c43 = c51 = c52 = c53 = c54 = 0,

c11 = (γ + µ)(ρs + µ+ ds)(δ + µ)(ρr + µ+ dr),

c12 = αε(1− p)(ρs + µ+ ds)(δ + µ)(ρr + µ+ dr),

c22 = (α + µ)(ρs + µ+ ds)(δ + µ)(ρr + µ+ dr),

c13 = (ρr + µ+ dr)(δ + µ)(αε(1− p)γη + α(γ + µ)(1− ε)(1− p)),

c23 = (ρr + µ+ dr)δ + µ)γη(α + µ),

c33 = (α + µ)(γ + µ)(δ + µ)(ρr + µ+ dr),

c14 = (ρr + µ+ dr)(1− q)ρs[γηαε(1− p) + α(1− ε)(1− p)(γ + µ)],

c24 = (ρr + µ+ dr)(1− q)ρsγη(α + µ),

99



c34 = (α + µ)(γ + µ)(1− q)ρs(ρr + µ+ dr),

c44 = (α + µ)(γ + µ)(ρs + µ+ ds)(ρr + µ+ dr),

c15 = (1− ν)δ(1− q)ρs[γηαε(1− p) + α(1− ε)(1− p)(γ + µ)],

c25 = γη(α + µ)(δ + µ)(1− q)ρs,

c35 = (α + µ)(γ + µ)(1− ν)δ(1− q)ρs,

c45 = (α + µ)(γ + µ)(ρs + µ+ ds)(1− ν)δ, and

c55 = (α + µ)(γ + µ)(ρs + µ+ ds)(δ + µ)

we compute V −1 as follows:

V −1 = 1
detV

Vadj = 1
detV



c11 c21 c31 c41 c51

c12 c22 c32 c42 c52

c13 c23 c33 c43 c53

c14 c24 c34 c44 c54

c15 c25 c35 c45 c55


=



v11 v21 v31 v41 v51

v12 v22 v32 v42 v52

v13 v23 v33 v43 v53

v14 v24 v34 v44 v54

v15 v25 v35 v45 v55


, where

v21 = v24 = v31 = v32 = v41 = v42 = v43 = v51 = v52 = v53 = v54 = 0,

v11 = 1
α + µ

, v12 = αε(1− p)
(α + µ)(γ + µ) , v13 = αε(1− p)γη + α(γ + µ)(1− ε)(1− p)

(α + µ)(γ + µ)(ρs + µ+ ds)
, v22 = 1

γ + µ
,

v23 = γη

(γ + µ)(ρs + µ+ ds)
, v14 = (1− q)ρsαε(1− p)γη + α(γ + µ)(1− ε)(1− p)]

(α + µ)(γ + µ)(ρs + µ+ dr)(δ + µ)(ρs + µ+ dr)
,

v34 = )(1− q)ρs
(γ + µ)(ρs + µ+ dr)(ρs + µ+ dr)

, v15 = (1− q)ρsαε(1− p)γη + α(γ + µ)(1− ε)(1− p)]
(α + µ)(γ + µ)(ρs + µ+ ds)(ρr + µ+ dr)

,

v25 = γη(1− q)ρs
(γ + µ)(ρs + µ+ ds)(ρr + µ+ dr)

, v35 = (1− ν)δ(1− q)ρs
(δ + µ)(ρs + µ+ ds)(ρr + µ+ dr)

, v44 = 1
δ + µ

,

v45 = (1− ν)δ
(δ + µ)(ρr + µ+ dr)

, v33 = 1
ρs + µ+ ds

, v55 = 1
ρr + µ+ dr

,

We compute the effective reproduction number Reff using next generation operator

method. In the dynamical system (5.1)−(5.10) the rate of appearance of new infec-

tions F and the transfer rate of individuals V at the disease free equilibrium point,
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E0 = (V 0, S0, H0
s , L

0
s, I

0
s , T

0
s , E

0, I0
r , T

0
r , , R

0) =
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0, 0, 0

)
is

FV −1 =



0 0 cωs(S0+σV 0)
N0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 cωr(S0+σV 0)
N0





v11 0 0 0 0

v12 v22 0 0 0

v13 v23 v33 0 0

v14 0 v34 v44 v54

v15 v25 v35 v45 v25



=



m1 m2 m3 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

m4 m5 m6 m7 m8

0 0 0 0 0

0 0 0 0 0


Where, N0 = S0+V 0 = Λ

µ
,m1 = v13c

ωs(S0+σV 0)
N0 , m2 = v23c

ωs(S0+σV 0)
N0 , m3 = v33c

ωs(S0+σV 0)
N0 ,

m4 = v15c
ωr(S0+σV 0)

N0 , m5 = v25c
ωr(S0+σV 0)

N0 , m6 = v35c
ωr(S0+σV 0)

N0 , m7 = v45c
ωr(S0+σV 0)

N0 and

m8 = v55c
ωr(S0+σV 0)

N0 .

The spectral radius (largest eigenvalue) of FV −1 is the required effective reproduction

number obtained by Reff = max{Reff (DS), Reff (MDR)} Where,

Reff (DS) =cωs(σψµ+ (θ + (1− ψ)µ))
θ + µ

× (1− p)α(εγη + (1− ε)(γ + η))
(α + µ)(γ + µ)(ρs + µ+ ds)

,

Reff (MDR) = cωr(σψµ+ (θ + (1− ψ)µ))
(θ + µ) × (1− ν)δ

(δ + µ)(ρr + µ+ dr)
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Basic Reproduction Number

If there is no intervention that is (ψ = p = ν = 0) then the dynamical system (5.1)−(5.10)

should become:

dV

dt
= −(σ(λs + λr) + θ + µ)V (5.11)

dS

dt
= Λ + θV − (λs + λr + µ)S (5.12)

dHs

dt
= λs(σV + S + κR)− (α + λr + µ)Hs (5.13)

dLs
dt

= εαHs − (γ + λr + µ)Ls (5.14)
dIs
dt

= ηγLs + α(1− ε)Hs − (ρs + µ+ ds)Is (5.15)
dTs
dt

= −(φ+ µ)Ts (5.16)
dE

dt
= λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs − (δ + µ)E (5.17)

dIr
dt

= δE − (ρr + µ+ dr)Ir (5.18)
dTr
dt

= −(ϕ+ µ)Tr (5.19)
dR

dt
= qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − (κ(λs + λr) + µ)R (5.20)

with the total population at a given time t:

N(t) = V (t) + S(t) +Hs(t) + Ls(t) + Is(t) + Ts(t) + E(t) + Ir(t) + Tr(t) +R(t)

The disease free equilibrium point of the dynamical system (5.11)−(5.20)will be:

E0 =
(

0, Λ
µ
, 0, 0, 0, 0, 0, 0, 0, 0

)

The non-negative matrix F , of the new infection terms, and the matrix V , of the transi-

tion terms associated with the model system (5.11)−(5.20) are given respectively by:
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F =



0 0 cωs 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 cωr


and

V =



(α + µ) 0 0 0 0

−αε (γ + µ) 0 0 0

−α(1− ε) −γη (ρs + µ+ ds) 0 0

0 0 −(1− q)ρs (δ + µ) 0

0 0 0 −δ (ρr + µ+ dr)


Since detV = (α+µ)(γ+µ)(ρs+µ+ds)(δ+µ)(ρr+µ+dr) 6= 0 and then V is non-singular.

The inverse V −1 of the matrix V is given by: V −1 = 1
detV

Vadj where Vadj is the adjoint

matrix of the matrix V .

FV −1 =



m1 m2 m3 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

m4 m5 m6 m7 m8

0 0 0 0 0

0 0 0 0 0


Where, N0 = S0 = Λ

µ
,m1 = v13cωs, m2 = v23cωs, m3 = v33cωs, m4 = v15cωr, m5 = v25cωr,

m6 = v35cωr, m7 = v45cωr and m8 = v55cωr.

Then the basic reproduction number R0 is computed when (ψ = p = ν = 0), then the

basic reproduction number R0 of the model system (5.11)−(5.20) is:

R0 = max{R0(DS), R0(MDR)}

Where R0(DS) = cωs
α(εγη + (1− ε)(γ + η))

(α + µ)(γ + µ)(ρs + µ+ ds)
and R0(MDR) = cωr

δ

(δ + µ)(ρr + µ+ dr)

We can also compute the effective reproduction number of drug sensitive TB and drug

resistance TB dynamical system: From the system of differential equations (5.1)-(5.6)

and (5.10); and the reproduction number of drug sensitive TB and from the system of
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differential equations (5.1)-(5.2) and (5.7)-(5.10) we calculate the reproduction number

of drug sensitive TB.

F1 =


0 0 cωs

0 0 0

0 0 0

 of the system of differential equations (5.1)−(5.6)and (5.10) and

F2 =

0 0

0 cωr

 of the system of differential equations (5.1),(5.2)and (5.7)−(5.10).

V1 =


(α + µ) 0 0

−αε(1− p) (γ + µ) 0

−α(1− ε)(1− p) −γη (ρs + µ+ ds)

 of the system of differential equations

(5.1)−(5.6)and (5.10) and

V2 =

 (δ + µ) 0

−δ(1− ν) (ρr + µ+ dr)

 of the system of differential equations (5.1),(5.2) and

(5.7)−(5.10).

Since detV1 = (α+ µ)(γ + µ)(ρs + µ+ ds) 6= 0 and detV2 = (δ + µ)(ρr + µ+ dr) 6= 0 then

V1 and V2 is non-singular.

F1V
−1

1 =


m1 m2 m3

0 0 0

0 0 0

 and F2V
−1

2 =

m7 m8

0 0



Then, the spectral radius of F1V
−1

1 is:

Reff (DS) = cωs(σψµ+ (θ + (1− ψ)µ))
θ + µ

× (1− p)α(εγη + (1− ε)(γ + η))
(α + µ)(γ + µ)(ρs + µ+ ds)

And the spectral radius (largest eigenvalue) of F2V
−1

2 is:

Reff (MDR) = cωr(σψµ+ (θ + (1− ψ)µ))
(θ + µ) × (1− ν)δ

(δ + µ)(ρr + µ+ dr)

Hence, Reff (DS) and Reff (MDR) are effective reproduction numbers for the TB drug

sensitive strain and for the drug-resistant TB strain, respectively.
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Local Stability Analysis of the Disease Free Equilibrium Point

Theorem 5.3. The disease free equilibrium point
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0, 0, 0

)
of

the dynamical system (5.1)−(5.10) is locally asymptotically stable if Reff (DS) < 1 and

Reff (MDR) < 1; and E0 is unstable otherwise.

Proof. The Jacobean matrix of the dynamical system (5.1)−(5.10) with respect to

(V, S,Hs, Ls, Is, Ts, E, Ir, Tr, R)at the disease free equilibrium point E0 is

J(E0) =



∂f1(E0)
∂V

∂f1(E0)
∂S

∂f1(E0)
∂Hs

∂f1(E0)
∂Ls

∂f1(E0)
∂Is

∂f1(E0)
∂Ts

∂f1(E0)
∂E

∂f1(E0)
∂Ir

∂f1(E0)
∂Tr

∂f1(E0)
∂R

∂f2(E0)
∂V

∂f2(E0)
∂S

∂f2(E0)
∂Hs

∂f2(E0)
∂Ls

∂f2(E0)
∂Is

∂f2(E0)
∂Ts

∂f2(E0)
∂E

∂f2(E0)
∂Ir

∂f2(E0)
∂Tr

∂f2(E0)
∂R

∂f3(E0)
∂V

∂f3(E0)
∂S

∂f3(E0)
∂Hs

∂f3(E0)
∂Ls

∂f3(E0)
∂Is

∂f3(E0)
∂Ts

∂f3(E0)
∂E

∂f3(E0)
∂Ir

∂f3(E0)
∂Tr

∂f3(E0)
∂R

∂f4(E0)
∂V

∂f4(E0)
∂S

∂f4(E0)
∂Hs

∂f4(E0)
∂Ls

∂f4(E0)
∂Is

∂f4(E0)
∂Ts

∂f4(E0)
∂E

∂f4(E0)
∂Ir

∂f4(E0)
∂Tr

∂f4(E0)
∂R

∂f5(E0)
∂V

∂f5(E0)
∂S

∂f5(E0)
∂Hs

∂f5(E0)
∂Ls

∂f5(E0)
∂Is

∂f5(E0)
∂Ts

∂f5(E0)
∂E

∂f5(E0)
∂Ir

∂f5(E0)
∂Tr

∂f5(E0)
∂R

∂f6(E0)
∂V

∂f6(E0)
∂S

∂f6(E0)
∂Hs

∂f6(E0)
∂Ls

∂f6(E0)
∂Is

∂f6(E0)
∂Ts

∂f6(E0)
∂E

∂f6(E0)
∂Ir

∂f6(E0)
∂Tr

∂f6(E0)
∂R

∂f7(E0)
∂V

∂f7(E0)
∂S

∂f7(E0)
∂Hs

∂f7(E0)
∂Ls

∂f7(E0)
∂Is

∂f7(E0)
∂Ts

∂f7(E0)
∂E

∂f7(E0)
∂Ir

∂f7(E0)
∂Tr

∂f7(E0)
∂R

∂f8(E0)
∂V

∂f8(E0)
∂S

∂f8(E0)
∂Hs

∂f8(E0)
∂Ls

∂f8(E0)
∂Is

∂f8(E0)
∂Ts

∂f8(E0)
∂E

∂f8(E0)
∂Ir

∂f8(E0)
∂Tr

∂f8(E0)
∂R

∂f9(E0)
∂V

∂f9(E0)
∂S

∂f9(E0)
∂Hs

∂f9(E0)
∂Ls

∂f9(E0)
∂Is

∂f9(E0)
∂Ts

∂f9(E0)
∂E

∂f9(E0)
∂Ir

∂f9(E0)
∂Tr

∂f9(E0)
∂R

∂f10(E0)
∂V

∂f10(E0)
∂S

∂f10(E0)
∂Hs

∂f10(E0)
∂Ls

∂f10(E0)
∂Is

∂f10(E0)
∂Ts

∂f10(E0)
∂E

∂f10(E0)
∂Ir

∂f10(E0)
∂Tr

∂f10(E0)
∂R


The Jacobean matrix of the dynamical system (5.1)−(5.10)at disease free equilibrium

point
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0, 0, 0

)
is

J(E0) =



a1 0 0 0 a2 0 0 a3 0 0

θ −µ 0 0 a4 0 0 a5 0 0

0 0 a6 0 a7 0 0 0 0 0

0 0 a8 a9 0 0 0 0 0 0

0 0 a10 ηγ a11 0 0 0 0 0

0 0 pα 0 0 a12 0 0 0 0

0 0 0 0 a13 0 a14 a15 0 0

0 0 0 0 0 0 a16 a17 0 0

0 0 0 0 0 0 νδ 0 a18 0

0 0 0 a19 qρs φ 0 ρr ϕ −µ


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Where a1 = −(θ + µ), a2 = −σcωs V
0

N0 , a3 = −σcωr V
0

N0 , a4 = cωs
S0

N0 , a5 = −cωr S
0

N0 ,

a6 = −(α + µ), a7 = cωs
(S0+σV 0)

N0 , a8 = αε(1− p), a9 = −(γ + µ), a10 = α(1− ε)(1− p),

a11 = −(ρs + µ+ ds), a12 = −(φ+ µ), a13 = (1− q)ρs, a14 = −(δ + µ), a15 = cωr
(S0+σV 0)

N0 ,

a16 = (1− ν)δ, a17 = −(ρr + µ+ dr), a18 = −(ϕ+ µ), a19 = γ(1− η)

The corresponding characteristic equation is obtained by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ 0 0 0 a2 0 0 a3 0 0

θ −µ− λ 0 0 a4 0 0 a5 0 0

0 0 a6 − λ 0 a7 0 0 0 0 0

0 0 a8 a9 − λ 0 0 0 0 0 0

0 0 a10 ηγ a11 − λ 0 0 0 0 0

0 0 pα 0 0 a12 − λ 0 0 0 0

0 0 0 0 a13 0 a14 − λ a15 0 0

0 0 0 0 0 0 a16 a17 − λ 0 0

0 0 0 0 0 0 νδ 0 a18 − λ 0

0 0 0 a19 qρs φ 0 ρr ϕ −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Or (λ+µ)2(a12−λ)(a18−λ)[λ2 +(a14 +a17)λ+a14a17−a15a16][−λ3 +(a6 +a9 +a11)]λ2−

(a6a9 + a6a11 + a9a11 + a7a10)λ+ a6a9a11 + γηa7a8 − a7a10a9] = 0

Thus, the roots of the characteristic equation are λ1 = −µ , λ2 = −µ , λ3 = −(θ + µ) ,

λ4 = −(φ+ µ) , λ5 = −(ϕ+ µ) , λ2 − (a14 + a17)λ+ a14a17 − a15a16 = 0

or λ3− (a6 +a9 +a11)λ2 +(a6a9 +a6a11 +a9a11 +a7a10)λ+a6a9a11−γηa7a8 +a7a10a9 = 0

⇒ λ2 + b1λ+ b2 = 0 and λ3 + c1λ
2 + c2λ+ c3 = 0

Where,

b1 =− (a14 + a17) = δ + µ+ ρr + µ+ dr

b2 =a14a17 − a15a16 = (δ + µ)(ρr + µ+ dr)− cωr
(S0 + σV 0)

N0 (1− ν)δ

=(δ + µ)(ρr + µ+ dr)(1−Reff (MDR))

c1 =− (a6 + a9 + a11) = 3µ+ α + γ + ρs + ds,

c2 =(a6a9 + a6a11 + a9a11 + a7a10)

=(α + µ)(γ + µ) + (α + µ)(ρs + µ+ ds) + (γ + µ)(ρs + µ+ ds),
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c3 =a6a9a11 − γηa7a8 + a7a10a9

=(α + µ)(γ + µ)(ρs + µ+ ds)−
(cωs(S0 + σV 0)[γηαε(1− p) + α(1− ε)(1− p)(γ + µ)])

N0 ,

=(α + µ)(γ + µ)(ρs + µ+ ds)− (cωs
[γηαε(1− p) + α(1− ε)(1− p)(γ + µ](S0 + σV 0)

N0

=(α + µ)(γ + µ)(ρs + µ+ ds)[1−Reff (DS)]

The Routh-Hurwitz conditions are the necessary and sufficient conditions on the coeffi-

cients of the quadratic and cubic polynomials equations. These conditions ensure that

all roots of the polynomials have negative real parts.

The Routh-Hurwitz conditions simplifies to b1 > 0, b2 > 0, c1 > 0, c2 > 0, c3 > 0 and

c1c2 > c3. That is, the necessary conditions for Routh-Hurwitz b2 > 0 and c3 > 0 is true

if Reff (MDR) < 1 and Reff (DS) < 1 respectively. Now justify the sufficient condition

for the Routh-Hurwitz criteria: c1c2−c3 > 0, c1c2−c3 = (3µ+α+γ+ρs+ds)[(α+µ)(γ+

µ)+(α+µ)(ρs+µ+ds)+(γ+µ)(ρs+µ+ds)]− (α+µ)(γ+µ)(ρs+µ+ds)[1−Reff (DS)].

Thus, c1c2 − c3 > 0 if and only is Reff (DS)< 1. Therefore all of the eigenvalues of

the Jacobean matrix have negative real parts when Reff (DS) < 1 and Reff (MDR) < 1

. Thus, the disease free equilibrium E0, of the dynamical system (5.1)−(5.10) is locally

asymptotical stable whenever Reff (DS)< 1 and Reff (MDR) < 1 and unstable otherwise

that is unstable if Reff > 1.

Global Stability of Diseases free Equilibrium point

Theorem 5.4. The diseases free equilibrium point
(
ψΛ
µ+θ ,

(θ+(1−ψ)µ)Λ
µ(µ+θ) , 0, 0, 0, 0, 0, 0, 0, 0

)
of

the dynamical system (5.1)−(5.10) is globally asymptotically stable in Ω if Reff (DS)< 1

and Reff (MDR)< 1, and unstable otherwise.

Proof. We apply a matrix-theoretic method using the Perron eigenvector to prove the

global stability of the disease-free equilibrium as in [109]. The dynamical system (5.1)−(5.10),

the drug sensitive TB disease compartment of is x1 = (Hs, Ls, Is)T ∈ R3 and non-disease

(drug sensitive TB) compartment y1 ∈ R7.
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That is, F1 =


0 0 cωs

0 0 0

0 0 0

, V1 =


(α + µ) 0 0

−αε(1− p) (γ + µ) 0

−α(1− ε)(1− p) −γη (ρs + µ+ ds)

 and

x
′
1 = (F1 − V1)x1 − f1(x1, y1)

Where, the non-negative matrix F1, of the new drug sensitive TB infection terms, and the

matrix V1, of the transition terms of drug sensitive TB and f1(x1, y1) = (λrHs, λrLs, 0)T

V −1
1 F1 = cωs


0 0 1

α+µ

0 0 αε(1−p)
(α+µ)(γ+µ)

0 0 αε(1−p)γη+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρs+µ+ds)


Since detV1 = (α+µ)(γ+µ)(ρs+µ+ds) 6= 0, the matrix V1 is invertible. And the inverse

of V1 and V −1
1 F1 are:

V −1
1 =


1

α+µ 0 0
αε(1−p)

(α+µ)(γ+µ)
1

γ+µ 0
αε(1−p)γη+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)ρs+µ+ds

γη
(γ+µ)

1
(ρs+µ+ds)



V −1
1 F1 =


1

α+µ 0 0
αε(1−p)

(α+µ)(γ+µ)
1

γ+µ 0
αε(1−p)γη+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)ρs+µ+ds

γη
(γ+µ)

1
(ρs+µ+ds)




0 0 cωs

0 0 0

0 0 0



=cωs


0 0 1

α+µ

0 0 αε(1−p)
(α+µ)(γ+µ)

0 0 αε(1−p)γη+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρs+µ+ds)


Hence, λ11 = λ12 = 0 and λ13 = αε(1−p)γη+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)(ρs+µ+ds) , are eigenvalues of V −1
1 F1.

Let, ωT1 = (u1, u2, u3) be the left eigenvector of V −1
1 F1 corresponding to λ13 = αε(1−p)γη+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)(ρs+µ+ds)

Thus, ωT1 V −1
1 F1 = cωs(u1, u2, u3)


−αε(1−p)γη+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)(ρs+µ+ds) 0 1
α+µ

0 −αε(1−p)γη+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρs+µ+ds)

αε(1−p)
(α+µ)(γ+µ)

0 0 0


i.e, ωT1 = (0, 0, 1) is the left eigenvector of V −1

1 F1 corresponding to the eigenvalue

λ13 = αε(1−p)γη+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρs+µ+ds) .
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Lets’ define a function W1(Hs, Ls, Is) as:

W1 = ωT1 V
−1

1 x1 = αε(1− p)γη + α(1− ε)(1− p)(γ + µ)
(α + µ)(γ + µ)(ρs + µ+ ds)

Hs + γη

γ + µ
Ls + 1

(ρs + µ+ ds)
Is

The derivative of W1 with respect to time:

W
′

1 =ωT1 V −1
1 x

′

1, Since, x′1 = (F1 − V1)x1 − f1(x1, y1)

=ωT1 V −1
1 [(F1 − V1)x1 − f1(x1, y1)]

=ωT1 [(V −1
1 F1 − V −1

1 V1)x1 − V −1
1 f1(x1, y1)]

=cωs(0, 0, 1)


−1 0 1

α+µ

0 −1 αε(1−p)
(α+µ)(γ+µ)

0 0 αε(1−p)γη+α(1−ε)(1−p)(γ+µ)
(α+µ)(γ+µ)(ρs+µ+ds) − 1

x1 − ωT1 V −1
1 f1(x1, y1)]

=[(Reff (DS)− 1)x1 − V −1
1 f1(x1, y1)]

=(Reff (DS)− 1)x1 − ωT1 V −1
1 f1(x1, y1)

Since ωT1 > 0, V −1
1 > 0 and f1(x1, y1) ≥ 0,W ′

1 < 0, if Reff (DS) < 1.

The multi drug resistance TB disease compartment of the dynamical system (5.1)−(5.10)

is x2 = (E, Ir)T ∈ R2 and non-disease (multi drug resistance TB) compartment y2 ∈ R8.

x
′

2 = (F2 − V2)x2 − f2(x2, y2)

Where, the non-negative matrix F2, of the new multi drug resistance TB infection terms,

and the matrix V2, of the transition terms of multi drug resistance TB.

F2 =

0 0

0 cωs

 and V2 =

 (δ + µ) 0

−δ(1− ν) (ρr + µ+ dr)



and f2(x2, y2) = (0, 0)T

Since, detV2 = (δ + µ)(ρr + µ+ dr) 6= 0, the matrix V2 is invertible.

Therefore, V −1
2 =

 1
(δ+µ) 0
δ(1−ν)

(δ+µ)(ρr+µ+dr)
1

(ρr+µ+dr)


Where, the non-negative matrix F2, of the new multi drug resistance TB infection terms,

and the matrix V2, of the transition terms of multi drug resistance TB and f2(x2, y2) =
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(0, 0)T . Therefore,V −1
2 F2 =

 1
δ+µ 0
δ(1−ν)

(δ+ν)(ρr+µ+dr)
1

(ρr+µ+dr)


0 0

0 cωr

 =

0 δ + µ

0 δ(1−ν)
(δ+ν)(ρr+µ+dr)


Hence, λ21 = 0 and λ22 = δ(1−ν)

(δ+ν)(ρr+µ+dr) are eigenvalues of V −1
2 F2. Let, ωT2 = (z1, z2) be

the left eigenvector of V −1
2 F2 corresponding to the eigenvalue λ22 = δ(1−ν)

(δ+ν)(ρr+µ+dr)

Therefore, ωT2 = (0, 1) left eigenvector of V −1
2 F2 corresponding to λ22 = δ(1−ν)

(δ+ν)(ρr+µ+dr) .

Lets’ define a function W2(E, Ir) as:

W2 =ωT2 V −1
2 x2 = (0, 1)

 1
δ+µ 0
δ(1−ν)

(δ+ν)(ρr+µ+dr)
1

(ρr+µ+dr)

 (E, Ir, )T

= δ(1− ν)
(δ + ν)(ρr + µ+ dr)

E + 1
(ρr + µ+ dr)

Ir

The derivative W2 with respect to time:

W
′

2 =ωT2 V −1
2 x

′

2, Since, x′2 = (F2 − V2)x2 − f2(x2, y2)

=ωT2 V −1
2 [(F2 − V2)x2)]

=ωT2 [(V −1
2 F2 − V −1

2 V2)x2]

=(0, 1){

0 δ + µ

0 δ(1−ν)
(δ+ν)(ρr+µ+dr)

− I}x2

=(Reff (MDR)− 1)x2

and Since ωT2 > 0, then W
′
2 < 0, if Reff (MDR) < 1.

Now we can define a Lyapunov function W (Hs, Ls, Is, E, Ir) for the system (5.1)−(5.10)

as:

W (Hs, Ls, Is, E, Ir) = A1Hs + A2Ls + A3Is + A4E + A5Ir

where,

A1 = αε(1−p)γη+α(1−ε)(1−p)(γ+µ)
(γ+µ)(γ+µ)(ρs+µ+ds) , A2 = γη

γ+µ , A3 = 1
(ρs+µ+ds) , A4 = δ(1−ν)

(δ+ν)(ρr+µ+dr) , A5 =
1

(ρr+µ+dr) .
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Differentiate W with respect to time, we have

W
′ =(αε(1− p)γη + α(1− ε)(1− p)(γ + µ))

(α + µ)(γ + µ)(ρs + µ+ ds)
H
′

s + γη

γ + µ
L
′

s + 1
(ρs + µ+ ds)

I
′

s

+ δ(1− ν)
(δ + µ)(ρs + µ+ dr)

E
′ + 1

ρr + µ+ dr
I
′

r

=(αε(1− p)γη + α(1− ε)(1− p)(γ + µ))
(α + µ)(γ + µ)(ρs + µ+ ds)

H
′

s + γη

γ + µ
L
′

s + 1
(ρs + µ+ ds)

I
′

s

+ δ(1− ν)
(δ + µ)(ρs + µ+ dr)

E
′ + 1

ρr + µ+ dr
I
′

r + (Reff (MDR)− 1)Ir

Substituting the derivatives and simplify:

W
′ =(Reff (DS)− 1)Is − (0, 0, 1)


1

α+µ 0 0
αε(1−p)

(α+µ)(γ+µ)
1

γ+µ 0
αε(1−p)γη+α(1−ε)(1−p)(γ+µ)

(α+µ)(γ+µ)ρs+µ+ds

γη
(γ+µ)

1
(ρs+µ+ds)

 (λrHs, λrLs, 0)T

+ (Reff (MDR)− 1)Ir

W
′ =(Reff (DS)− 1)Is + (Reff (MDR)− 1) Ir

− λr
(
αε(1− p)γη + α(1− ε)(1− p)(γ + µ)

(α + µ)(γ + µ)(ρs + µ+ ds)
Hs + γη

γ + µ
Ls

)

Hence, W ′
< 0, if Reff (DS) < 1 and Reff (MDR) < 1. And W

′ = 0, at the disease free

equilibrium point E0.

By LaSalle’s invariant principle, every solution to the model equations (5.1)−(5.10) with

initial conditions in Ω tends to E0 as t → ∞. Hence, since the region Ω is positively-

invariant, the disease free equilibrium point, E0 is globally asymptotically stable in Ω if

Reff < 1.

5.4 Existence of Endemic Equilibrium Point

There are three possible endemic equilibria for the dynamical system (5.1)−(5.10): two

boundary equilibria E1 (when only the drug sensitive TB-strain is present) and E2 (when

only the multi drug resistant TB-strain is present), and E3 (when both strains exist).

111



5.4.1 The Drug Sensitive TB-strain only Equilibrium

This is obtained by setting λr = 0 and q = 1 (that treatment of active drug sensitive

TB is 100% effective) in the dynamical system (5.1)−(5.10). The drug sensitive TB only

equilibrium in terms of the equilibrium value of the force of infection λ∗s is given as:

E1 = (V ∗, S∗, H∗s , L∗s, I∗s , T ∗s , 0, 0, 0, R∗)

From equation (5.1) of the dynamical system (5.1)−(5.10):
dV

dt
= ψΛ− (σ(λs + λr) + θ + µ)V = 0⇒ V ∗ = ψΛ

(σλ∗s + θ + µ)
From equation (5.2) of the dynamical system (5.1)−(5.10):

dS

dt
= (1− ψ)Λ + θV − (λs + λr + µ)S = 0

⇒ S∗ = (1− ψ)Λ + θV ∗

(λ∗s + λ∗r + µ) = Λ(1− ψ)σ(λ∗s + λ∗r) + θ + (1− ψ)µ]
(λ∗s + λ∗r + µ)[σ(λ∗s + λ∗r) + θ + µ]

= Λ(1− ψ)σλ∗s + θ + (1− ψ)µ]
(λ∗s + µ)[σ(λ∗s + θ + µ]

From equation (5.3) of the dynamical system (5.1)−(5.10):
dHs

dt
= λsS + σλsV + κλsR− (α + λr + µ)Hs = 0⇒ H∗s = λ∗s(S∗ + σV ∗ + κR∗)

(α + µ)
From equation (5.4) of the dynamical system (5.1)−(5.10):

dLs
dt

= αε(1− p)Hs − (λr + γ + µ)Ls = 0⇒ L∗s = αε(1− p)H∗s
(γ + µ)

From equation (5.5) of the dynamical system (5.1)−(5.10):
dIs
dt

= γηLs + α(1− ε)(1− p)Hs − (ρs + µ+ ds)Is = 0

⇒ I∗s = γηL∗s + α(1− ε)(1− p)H∗s
(ρs + µ+ ds)

⇒ I∗s = (γηαε(1− p) + α(γ + µ)(1− ε)(1− p))
(γ + µ)(ρs + µ+ ds)

H∗s

⇒ H∗s = (γ + µ)(ρs + µ+ ds)
γηαε(1− p) + α(γ + µ)(1− ε)(1− p)I

∗
sand

⇒ L∗s = αε(1− p)H∗s
(γ + µ) = αε(1− p)(ρs + µ+ ds)

(γηαε(1− p) + α(γ + µ)(1− ε)(1− p))I
∗
s

From equation (5.6) of the dynamical system (5.1)−(5.10):
dTs
dt

= αpHs − (φ+ µ)Ts = 0⇒ T ∗s = αpH∗s
(φ+ µ)

⇒ T ∗s = αp(γ + µ)(ρs + µ+ ds)
(φ+ µ)[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]I

∗
s
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From equation (5.7) of the dynamical system (5.1)−(5.10):

dE

dt
= λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs − (δ + µ)E = 0

⇒ E∗ = λ∗r(S∗ +H∗s + L∗s + σV ∗ + κR∗) + (1− q)ρsI∗s
(δ + µ) = 0, (since, q = 1 and Ir = 0)

From equation (5.8) of the dynamical system (5.1)−(5.10):

dIr
dt

= (1− ν)δE − (ρr + µ+ dr)Ir = 0⇒ I∗r = 0

From equation (5.9) of the dynamical system (5.1)−(5.10):

dTr
dt

= νδE − (ϕ+ µ)Tr = 0⇒ T ∗r = νδE∗

(ϕ+ µ) = 0

From equation (5.10) of the dynamical system (5.1)−(5.10):

dR

dt
=qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − (κ(λs + λr) + µ)R = 0

R∗ =ρsI
∗
s + ρrI

∗
r + γ(1− η)L∗s + φT ∗s + ϕT ∗r
(κ(λ∗s + λ∗r) + µ) = ρsI

∗
s + γ(1− η)L∗s + φT ∗s

(κλ∗s + µ)

= 1
(κλ∗s + µ)

ρs + γ(1− η)αη(1− p)(ρs + µ+ ds)
[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]

+ 1
(κλ∗s + µ)

φαp(γ + µ)(ρs + µ+ ds)
(φ+ µ)[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]I

∗
s

Hence, the drug sensitive TB-strain only equilibrium point:

E1 = (V ∗, S∗, H∗s , L∗s, I∗s , T ∗s , 0, 0, 0, R∗)

where V ∗ = ψΛ
σλ∗s+θ+µ , S∗ = Λ(1−ψ)σλ∗s+θ+(1−ψ)µ]

(λ∗s+µ)(σλ∗s+θ+µ) , H∗s = (γ+µ)(ρs+µ+ds)
γηαε(1−p)+α(γ+µ)(1−ε)(1−p))I

∗
s

L∗s = αε(1−p)(ρs+µ+ds)
γηαε(1−p)+α(γ+µ)(1−ε)(1−p)I

∗
s , T ∗s = αp(γ+µ)(ρs+µ+ds)

(φ+µ)[γηαε(1−p)+α(γ+µ)(1−ε)(1−p)]I
∗
s ,

R∗ = 1
κλ∗s+µ × {ρs + γ(1−η)αε(1−p)(ρs+µ+ds)

[γηαε(1−p)+α(γ+µ)(1−ε)(1−p)] + φαp(γ+µ)(ρs+µ+ds)
(φ+µ)[γηαε(1−p)+α(γ+µ)(1−ε)(1−p)]}I

∗
s

Existence of drug sensitive TB-strain only equilibrium

As the drug sensitive TB-strain only equilibrium E1 given in terms λs the existence of

the equilibrium value of the force of infection λs shows the existence of E1. Therefore,

we are going to put the conditions that λs exists.

λ∗s = cωsµ
Λ I∗s

where N∗(t) is replaced by its limiting value, N∗ = Λ
µ
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⇒λ∗s = cωsµ

Λ
γηαε(1− p) + α(γ + µ)(1− ε)(1− p)

(γ + µ)(ρs + µ+ ds)
H∗s

⇒λ∗s = a1Reff (DS)λ∗s
[(1− ψ)σλ∗s + θ + (1− ψ)µ]

(λ∗s + µ)(σλ∗s + θ + µ) + σψ
(σλ∗s+θ+µ)

+ a1a2Reff (DS)λ∗2s

Where, a1 = µ(θ+µ)
Λ+(θ+(1−φ)µ) ,

a2 = κΛ
cωsµ

{ ρs + γ(1− η)αε(1− p)(ρs + µ+ ds)
[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)] + φαp(γ + µ)(ρs + µ+ ds)

(φ+ µ)[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]}

⇒σa1a2Reff (DS)(λ∗s)4 + [(σµ+ θ + µ)a1a2Reff (DS)− σ](λ∗s)3

+ [µ(θ + µ)a1a2 + σa1]Reff (DS)− (σµ+ θ + µ)(λ∗s)2

+ a1Reff (DS)[θ + (1− ψ)µ− σψµ]− µ(θ + µ)λ∗s = 0

⇒B1(λ∗s)4 +B2(λ∗s)3 +B3(λ∗s)2 +B4λ
∗
s = 0 (5.21)

Where, B1 = σa1a2Reff (DS) > 0

B2 = (σµ+ θ + µ)a1a2Reff (DS)− σ

B3 = [µ(θ + µ)a1a2 + σa1]Reff (DS)− (σµ+ θ + µ)

B4 = a1Reff (DS)[θ + (1− ψ)µ− σψµ]− µ(θ + µ)

The solutions for the quartic polynomial (5.21) are λ∗s = 0 and B1(λ∗s)3 +B2(λ∗s)2 +B3λ
∗
s+

B4 = 0. The case λ∗s = 0 corresponds to no drug sensitive TB and B1(λ∗s)3 + B2(λ∗s)2 +

B3λ
∗
s + B4 = 0 corresponds to the existence of at most three drug sensitive TB only

endemic equilibrium points.

Theorem 5.5. In the equation of polynomial, B1(λ∗s)3 + B2(λ∗s)2 + B3λ
∗
s + B4 = 0, the

relation between roots and coefficients are given by:

1) B2
B1

= −( sum of all roots)

2) B3
B1

= sum of products of roots taken two at a time

3) B4
B1

= − (products of roots taken three at a time)

Remark:

The TB model system (5.1)−(5.10) has:
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1) one positive drug sensitive TB only endemic equilibrium if B2 < 0, and B3 = B4 =

0. That is if Reff (DS) < σ
(σµ+θ+µ)a1a2

, one positive drug sensitive TB only endemic

equilibrium. And the root will be, r1 = −B2
B1

.

2) two positive drug sensitive TB only endemic equilibrium if B2 < 0, B3 > 0 and

B4 = 0. That is, if (σµ+θ+µ)
(µ(θ+µ)a1a2+σa1) < Reff (DS) < σ

(σµ+θ+µ)a1a2
two positive drug

sensitive TB only endemic equilibrium. r1 + r2 = −B2
B1

and r1r2 = B3
B1

.

Therefore r1(−r1 − B2
B1

) = B3
B1
⇒ r2

1 + r1
B2
B1

+ B3
B1

= 0 ⇒ r1 = −B2±
√
B2

2−4B1B3
2B1

.

Then has two roots if B2 < 0 and B2
2 − 4B1B3 > 0. Reff (DS) < σ

(σµ+θ+µ)a1a2
and

[(σµ+θ+µ)a1a2Reff (DS)−σ]2 > 4[µ(θ + µ)a1a2 + σa1]Reff(DS)− (σµ+ θ + µ)

3) three positive drug sensitive TB only endemic equilibrium if the coefficients B2 <

0, B3 > 0 and B4 < 0 with the relation to the three roots:

r1 + r2 + r3 = −B2/B1 , r1r2 + r1r3 + r2r3 = B3/B1 and r1r2r3 = −B4/B1

That is, if (σµ+θ+µ)
µ(θ+µ)a1a2+σa1

< Reff (DS) < σ
(σµ+θ+µ)a1a2

andReff (DS) < µ(θ+µ)
a1[θ+(1−ψ)µ−σψµ] .

4) no positive drug sensitive TB only endemic equilibrium otherwise.

Theorem 5.6. The model (5.1)−(5.10) has unique drug sensitive TB only endemic equi-

librium if B2 <0 and B3 = B4 = 0. That is, the model (5.1)−(5.10) has unique drug

sensitive TB only endemic equilibrium λ∗s = m∗ = −B2/B1 .

Proof. Since B3 = B4 = 0, from quadric polynomial B1(λ∗s)4+B2(λ∗s)3+B3(λ∗s)2+B4λ
∗
s =

0 we have (λ∗s)3(B1λ
∗
s +B2) = 0. Then the only positive drug sensitive TB only endemic

equilibrium is, λ∗s = −B2/B1 since B1 > 0 and B2 < 0. The model (5.1)−(5.10) has

unique drug sensitive TB only endemic equilibrium if B2 < 0 and B3 = B4 = 0.

Theorem 5.7. The dynamical system (5.1)−(5.10) has unique drug sensitive TB only

endemic equilibrium if Reff (DS) < σ
(σµ+θ+µ)a1a2

and B2 = B3 = 0. That is, the model

(5.1)−(5.10) has unique endemic equilibrium when λ∗s = m∗ = −B2/B1 = σ−(σµ+θ+µ)a1a2Reff (DS)
σa1a2Reff (DS)

Proof. The model (5.1)-(5.10) has unique endemic equilibrium if B2 < 0 and B3 =

B4 = 0. That is, B2 < 0 ⇒ Reff (DS) < σ
(σµ+θ+µ)a1a2

. And hence, at the unique

endemic equilibrium point, λ∗s = m∗ = −B2/B1 = σ−(σµ+θ+µ)a1a2Reff (DS)
σa1a2Reff (DS) Where, m∗ =

σ−(σµ+θ+µ)a1a2Reff (DS)
σa1a2Reff (DS) .
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Local stability of drug sensitive TB-strain only equilibrium point

Theorem 5.8. The drug sensitive TB only equilibrium E1 of the dynamical system

(5.1)−(5.6), (5.10) when q = 1 is locally asymptotically stable if Reff (DS)> 1 > Reff

(MDR) and R∗ < Λ(ds+µ)
cωsκµ

Proof. In this case, E = I∗r = T ∗r = 0 in system (5.1)−(5.10), that is,

E1 exists and is unique if Reff (DS) > 1 and E1 to exist alone if the resistant strain

does not exist (i.e., Reff (MDR) < 1). The components of the unique endemic equi-

librium E1 can then be obtained by substituting the unique value of λ∗s = m∗ in to

the dynamical system (5.1)−(5.6), (5.10). Then drug sensitive TB only equilibrium,

E1 = (V ∗, S∗, H∗s , L∗s, I∗s , T ∗s , 0, 0, 0, R∗), where

V ∗ = ψΛ
(σm∗ + θ + µ) , S

∗ = Λ(1− ψ)σm∗ + (θ + (1− ψ)µ]
(m∗ + µ)(σm∗ + θ + µ) ,

H∗s = Λm∗(γ + µ)(ρs + µ+ ds)
(cωsµ(γηαε(1− p) + α(γ + µ)(1− ε)(1− p))

L∗s = Λm∗αε(1− p)(ρs + µ+ ds)
cωsµ(γηαε(1− p) + α(γ + µ)(1− ε)(1− p)) , I

∗
s = Λm∗

cωsµ
,

T ∗s = Λm∗αp(γ + µ)(ρs + µ+ ds)
cωsµ(φ+ µ)[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]

R∗ = Λm∗
µ(cωsκm∗ + Λ){ρs + γ(1− η)αε(1− p)(ρs + µ+ ds)

[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]}

+ Λm∗
µ(cωsκm∗ + Λ)

φαp(γ + µ)(ρs + µ+ ds)
(φ+ µ)[γηαε(1− p) + α(γ + µ)(1− ε)(1− p)]

m∗ =σ − (σµ+ θ + µ)a1a2Reff (DS)
σa1a2Reff (DS)

The Jacobean matrix of the dynamical system (5.1)−(5.6), (5.10) at equilibrium E1 is

given by:

J(E1) =



g1 0 0 0 b1 0 0

θ g2 0 0 b2 0 0

σm∗ m∗ g3 0 z 0 κm∗

0 0 αε(1− p) g4 0 0 0

0 0 α(1− ε)(1− p) γη g5 0 0

0 0 αp 0 0 g6 0

0 0 0 γ(1− η) ρs φ g7


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Where, m∗ = σ−(σµ+θ+µ)a1a2Reff (DS)
σa1a2Reff (DS) , g1 = −(σm∗+θ+µ), g2 = −(m∗+µ),g3 = −(α+µ),

g4 = −(γ+µ),g5 = −(ρs+µ+ds),g6 = −(φ+µ),g7 = −(κm∗+µ),b1 = σcωsV ∗

N∗
,b2 = cωsV ∗

N∗
,

z = cωsµ
Λ (S∗ + σV ∗ + κR∗)

The characteristic equation of J(E1) denoted by |J(E1)− λI| = 0, and given by:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 − λ 0 0 0 b1 0 0

θ g2 − λ 0 0 b2 0 0

σm∗ m∗ g3 − λ 0 z 0 κm∗

0 0 αε(1− p) g4 − λ 0 0 0

0 0 α(1− ε)(1− p) γη g5 − λ 0 0

0 0 αp 0 0 g6 − λ 0

0 0 0 γ(1− η) ρs φ g7 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Now we apply the Gershgorin circle theorem to determine the sign of the eigenvalues of

the characteristic equation |J(E1)− λI| = 0.

From the first column of the Jacobian matrix J(E1) the dynamical system (5.1)−(5.6),

(5.10),

|g1| = (σm∗ + θ + µ) and Σ7
i=1,i 6=1ci1 = θ + σm∗

⇒|g1| > Σ7
i=1,i 6=1ci1

From the second column of the Jacobian matrix J(E1) of the dynamical system (5.1)−(5.6),

(5.10),

|g2| = (m∗ + µ), and Σ7
i=1,i 6=2ci2 = m∗ ⇒ |g2| > Σ7

i=1,i 6=2ci2

From the third column of the Jacobian matrix J(E1) of the dynamical system (5.1)−(5.6),

(5.10),

|g3| = (α + µ), and Σ7
i=1,i 6=3ci3 = αε(1− p) + α(1− ε)(1− p) + αp = α

⇒|g3| > Σ7
i=1,i 6=3ci3

From the fourth column of the Jacobian matrix J(E1) of the dynamical system (5.1)−(5.6),

(5.10),

|g4| = (γ + µ), and Σ7
i=1,i 6=4ci4 = γη + γ(1− η) = γ ⇒ |g4| > Σ7

i=1,i 6=4ci4
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From the fifth column of the Jacobian matrix J(E1) of the dynamical system (5.1)−(5.6),

(5.10),

|g5| = ρs + µ+ ds and Σ7
i=1,i 6=5ci5 = b1 + b2 + z + ρs = cωs

N∗
κR∗ + ρs

If we let N∗ = Λ
µ

, then Σ7
i=1,i 6=5ci5 = cωsµκ

Λ R∗ + ρs. ⇒ |g5| > Σ7
i=1,i 6=5ci5 if R∗ < Λ(ds+µ)

cωsµκ
.

From the sixth column of the Jacobian matrix J(E1),

|g6| = (φ+ µ) and Σ7
i=1,i 6=6ci6 = φ⇒ |g6| > Σ7

i=1,i 6=6ci6

From the seventh column of the Jacobian matrix J(E1),

|g7| = (κm∗ + µ) and Σ7
i=1,i 6=7ci7 = κm∗ ⇒ |g7| > Σ7

i=1,i 6=7ci7

Therefore, |g5| > Σ7
i=1,i 6=5ci5 if R∗ < Λ(ds+µ)

cωsµκ
and for the remaining column of the Jacobian

matrix J(E1), |gi| > Σ7
i=1,i 6=jcij for j = {1, . . . , 7} − {5}. Therefore, if |cii| > Σ7

i=1,i 6=jcij ,

for j = 1, . . . , 7, for the matrix J(E1),

Hence, the matrix J(E1) is a strictly column diagonally dominant matrix if R∗ < Λ(ds+µ)
cωsµκ

.

And also all diagonal elements of J(E1) are negative. Therefore, using the Gershgorin

circle theorem, the radius of the disc less than the magnitude of corresponding element

if R∗ < Λ(ds+µ)
cωsκµ

We can show that all eigenvalues of J(E1) has negative real part if

Reff (DS)> 1 > Reff (MDR) and R∗ < Λ(ds+µ
cωsκµ

Hence, the drug resistance TB only equilib-

rium E1 is locally asymptotically stable if Reff (DS)> 1 > Reff (MDR) and R∗ < Λ(ds+µ
cωsκµ

.

Global Stability of Drug Sensitive TB only Endemic Equilibrium Point

Theorem 5.9. The drug sensitive TB only equilibrium E1 of Model (5.1)-(5.6), (5.10)

is globally asymptotically stable if q = 1, Reff (DS)> 1 > Reff (MDR), V
V ∗

, S
S∗

, R
R∗
≤ 1

and Hs

H∗s
≤ Is

I∗s
.

Proof. We use a graph-theoretic method as in [109] to construct a Lyapunov function.
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We define functions:

D1 = V − V ∗ − V ∗ln V
V ∗

, D2 = S − S∗ − S∗ln S
S∗
, D3 = Hs −H∗s −H∗s ln

Hs

H∗s
,

D4 = Ls − L∗s − L∗sln
Ls
L∗s
, D5 = Ts − T ∗s − T ∗s ln

Ts
T ∗s
, D6 = Is − I∗s − I∗s ln

Is
I∗s
,

D7 = R−R∗ −R∗ln R
R∗

Differentiating the functions Di for i = 1, ..., 7 with respect to time„ and use the values

at the endemic equilibrium point E1 that:

ψΛ = (σλ∗s + θ + µ)V ∗, (1− ψ)Λ = −θV ∗ + (λ∗s + µ)S∗,

(α + µ) = λ∗s(S∗ + σV ∗ + κR∗)
H∗s

, (γ + µ) = αε(1− p)H∗s
L∗s

,

(ρs + µ+ ds) = γηL∗s
I∗s

+ α(1− ε)(1− p)H∗s
I∗s

, (φ+ µ) = αpH∗s
T ∗s

,

µ = ρsI
∗
s

R∗
+ γ(1− η)L∗s

R∗
+ φT ∗s

R∗
− κλ∗s

And using the inequality 1 − x + lnx ≤ 0, for all x > 0 and the values at the endemic

equilibrium point E1 that:

D
′

1 =
(

1− V ∗

V

)
V
′ =

(
1− V ∗

V

)
(ψΛ− (σλs + θ + µ)V )

=− (θ + µ)(V − V ∗)2

V
+ cµωs

N∗
V ∗

(
I∗s −

IsV

V ∗
+ Is −

I∗sV
∗

V

)
=− (θ + µ)(V − V ∗)2

V
+ cσωs

N∗
V ∗I∗s

(
1− IsV

I∗sV
∗ −

V ∗

V
+ Is
I∗s

)

≤cσωs
N∗

V ∗I∗s

(
1− IsV

I∗sV
∗ −

V ∗

V
+ Is
I∗s

)
≤ cσωs

N∗
V ∗I∗s

(
−ln IsV

I∗sV
∗ −

V ∗

V
+ Is
I∗s

)

≤σλ∗sV ∗
(
−ln Is

I∗s
+ ln

V ∗

V
− V ∗

V
+ Is
I∗s

)
= a15G15

D
′

2 =
(

1− S∗

S

)
S
′ =

(
1− S∗

S

)
((1− ψ)Λ + θV − (λs + µ)S)

=
(

1− S∗

S

)
(−θV ∗ + (λ∗s + θ)S∗ + θV − (λs + µ)S)

=− µ(S − S∗)2

S
+ θV ∗

(
S∗

S
− 1− V S∗

V ∗S
+ V

V ∗

)
+ cωs
N∗

S∗I∗s

(
1− IsS

I∗sS
∗ −

S∗

S
+ Is
I∗s

)

≤θV ∗
(
S∗

S
− 2− lnV S

∗

V ∗S
+ V

V ∗

)
+ S∗λ∗s

(
−ln Is

I∗s
+ ln

S∗

S
− S∗

S
+ Is
I∗s

)

= : a21G21 + a25G25
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D
′

3 =
(

1− H∗s
Hs

)
H
′

s =
(

1− H∗s
Hs

)
λsS + σλsV + κλsR− (α + µ)Hs)

=
(

1− H∗s
Hs

)
(λsS + σλsV + κλsR + λ∗s

(
− S

∗

H∗s
− σ V

∗

H∗s
− κR

∗

H∗s

)
Hs

≤λ∗sS∗
(
IsS

I∗sS
∗ −

Is
I∗s
− ln S

S∗

)
+ σV ∗λ∗s

(
IsV

I∗sS∗
− ln V

V ∗

)
+ κR∗λ∗s

(
IsR

I∗sR
∗ −

Is
I∗s
− ln R

R∗

)

+ (S∗ + σV ∗ + κR∗)λ∗s
(
Is
I∗s
− Hs

H∗s
+ ln

Hs

H∗s
− ln Is

I∗s

)

= : a32G32 + a31G31 + a37G37 + a35G35

D
′

4 =
(

1− L∗s
Ls

)
L
′

s =
(

1− L∗s
Ls

)
(αε(1− p)Hs − (γ + µ)Ls)

=αε(1− p)H∗s
(

1− L∗s
Ls

)(
H∗s
Hs

− L∗s
Ls

)
= αε(1− p)H∗s

(
1− L∗s

Ls
+ H∗s
Hs

− H∗s
Hs

L∗s
Ls

)
≤αε(1− p)H∗s

(
−L

∗
s

Ls
− lnL

∗
s

Ls

H∗s
Hs

+ H∗s
Hs

)
≤αε(1− p)H∗s

(
−Ls
L∗s

+ ln
Ls
L∗s
− lnHs

H∗s
+ Hs

H∗s

)
= a43G43

D
′

5 =
(

1− I∗s
Is

)
I
′

s =
(

1− I∗s
Is

)
(γηLs + α(1− ε)(1− p)Hs − (ρs + µ+ ds)Is)

=
(

1− I∗s
Is

)
(γηLs + α(1− ε)(1− p)Hs − (γηL∗s + α(1− ε)(1− p)H∗s ) Is

I∗s

=γηL∗s
(

1− Is
I∗s
− Is
I∗s

Ls
L∗s

+ Ls
L∗s

)
+ α(1− ε)(1− p)H∗s

(
1− Is

I∗s
− Is
I∗s

Hs

H∗s
+ Hs

H∗s

)

≤γηL∗s

(
− Is
I∗s
− ln Is

I∗s

Ls
L∗s

+ Ls
L∗s

)
+ α(1− ε)(1− p)H∗s

(
− Is
I∗s
− ln Is

I∗s

Hs

H∗s
+ Hs

H∗s

)

≤γηLs∗
(
Is
I∗s

+ ln
Is
I∗s
− lnLs

L∗s
+ Ls
Lss

)
+ α(1− ε)(1− p)H∗s

(
− Is
I∗s

+ ln
Is
I∗s
− lnHs

H∗s
+ Hs

H∗s

)

= : a54G54 + a53G53

D
′

6 =
(

1− T ∗s
Ts

)
T
′

s =
(

1− T ∗s
Ts

)
(αpHs − (φ+ µ)Ts)

=(φ+ µ)T ∗s
(

1− T ∗s
Ts

)(
Hs

H∗s
− T ∗s
Ts

)
= (φ+ µ)T ∗s

(
Hs

H∗s
− Ts
T ∗s
− T ∗s
Ts

Hs

H∗s
+ 1

)

≤(φ+ µ)T ∗s
(
Hs

H∗s
− Ts
T ∗s
− lnT

∗
s

Ts

Hs

H∗s

)
≤ (φ+ µ)T ∗s

(
Hs

H∗s
− lnHs

H∗s
− Ts
T ∗s

+ ln
Ts
T ∗s

)
=: a63G63
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D
′

7 =
(

1− R∗

R

)
R
′ =

(
1− R∗

R

)
(γ(1− η)Ls + φTs − (κλs + µ)R)

=
(

1− R∗

R

)
(γ(1− η)Ls + φTs − κλsR− (ρsI∗s + γ(1− η)L

∗
s

R∗
+ φ

T ∗s
R∗
− κλ∗s)R)

=ρsI∗s
(
Is
I∗s
− ln Is

I∗s
+ ln

R

R∗
− R

R∗

)
+ γ(1− η)L∗s

(
1− R

R∗
− Ls
L∗s

R∗

R
+ Ls
L∗s

)

+ φT ∗s

(
1− R

R∗
− Ts
T ∗s

R∗

R
+ Ts
T ∗s

)
+ κI∗sR

∗
(
R

R∗
− 1− R

R∗
Is
I∗s

+ Is
I∗s

)

≤ρsI∗s

(
Is
I∗s
− ln Is

I∗s
+ ln

R

R∗
− R

R∗

)
+ γ(1− η)L∗s

(
− R

R∗
− lnLs

L∗s

R

R∗
+ Ls
L∗s

)

+ φT ∗s

(
− R

R∗
− ln Ts

T ∗s

R∗

R
+ Ts
T ∗s

)
+ κI∗sR

∗
(
R

R∗
− 2− ln R

R∗
Is
I∗s

+ Is
I∗s

)

≤ρsI∗s

(
Is
I∗s
− ln Is

I∗s
+ ln

R

R∗
− R

R∗

)
+ γ(1− η)L∗s

(
− R

R∗
+ ln

R

R∗
− lnLs

L∗s
+ Ls
L∗s

)

+ φT ∗s

(
− R

R∗
+ ln

R

R∗
− ln Ts

T ∗s
+ Ts
T ∗s

)
+ κI∗sR

∗
(
R

R∗
− 2− ln R

R∗
Is
I∗s

+ Is
I∗s

)

= : a74G74 + a76G76 + a75aG75a + a75bG75b

Where, a15 = a31 = σV ∗λ∗s, a21 = θ,a25 = a32 = S∗λ∗s, a37 = κR∗λ∗s, a35 = (S∗ + σV ∗ +

κR∗)λ∗s, a43 = αε(1 − p)H∗s , a54 = γηL∗s,a53 = α(1 − ε)(1 − p)H∗s , a63 = (φ + µ)T ∗s ,

a74 = ρsI
∗
s , a76 = γ(1− η)L∗s, a75a = φT ∗s , a75b = κλ∗sR

∗ and all other aij = 0

With the constants aij above and A = [aij] for i, j = 1, ..., 7, 5a, 5b, we construct the

directed graph G(A) as Figure 5.2.

Figure 5.2: The digraph G(A) for dynamical system (5.1)-(5.6),(5.10).

The associated weighted digraph G(A) (figure 5.2) has seven vertices. Along the cycles
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in figure 5.2:

G35 +G53 = Is

I∗s
− Hs

H∗s
+ lnHs

H∗s
− ln Is

I∗s
) + (− Is

I∗s
+ ln Is

I∗s
− HS

H∗s
+ Hs

H∗s
) = 0 and

G35 +G43 +G54 = ( Is

I∗s
− Hs

H∗s
+ lnHs

H∗s
− ln Is

I∗s
) + (−Ls

L∗s
+ lnLs

L∗s
− lnHs

H∗s
+ Hs

H∗s
) + (− Is

I∗s
+ ln Is

I∗s
−

lnLs

L∗s
+ Ls

L∗s
) = 0.

And for the other cycles in figure 5.2, ∑Gij ≤ 0, if V
V ∗

, S
S∗

, R
R∗
≤ 1 and Hs

H∗s
≤ Is

I∗s
.

By Proposition 1.3 of [109], there exists ci > 0, i = 1, . . . , 7 such that D = Σ7
i=1ciDi is

a Lyapunov function for equations (5.1)-(5.6),(5.10). The relations between ci’s can be

derived from Theorems 3.3 and 3.4 of [109] such that:

a32 > 0 and d+(2) = 1 implies c3a32 = Σ7
k=1c2a2k

⇒ c3a32 = c2(a21 + a25)⇒ c3 = c2
a21 + a25

a32

a15 > 0 and d−(1) = 1 implies c1a15 = Σ7
k=1ckak1

⇒ c1a15 = c2a21 + c3a31 ⇒ c1 = c2
(a21a32 + a31(a21 + a25))

(a32a15)

a43 > 0 and d−(4) = 1 implies c4a43 = Σ7
k=1ckak4

⇒ c4a43 = c5a54 ⇒ c4 = c5
a54

a43

a37 > 0 and d+(7) = 1 implies c3a37 = Σ7
k=1c7a7k

⇒c3a37 = c7(a74 + a75a + a75b + a76)

⇒c7 = c3
a37

(a74 + a75a + a75b + a76)

⇒c7 = c2
a37(a21 + a25)

(a32(a74 + a75a + a75b + a76))

a76 > 0 and d+(6) = 1 implies c7a76 = Σ7
k=1c6a6k ⇒ c7a76 = c6(a65 + a63)

⇒ c6 = c7
a76

(a65 + a63) ⇒ c6 = c2
(a76a37(a21 + a25))

(a32(a65 + a63)(a74 + a75a + a75b + a76))

Therefore, D = c1D1 + c2D2 + c3D3 + c4D4 + c5D5 + c6D6 + c7D7 is a Lyapunov function

for (5.1)− (5.6), (5.10). Therefore, E2 is globally asymptotically stable in the interior of

Ω when Reff (DS)> 1 > Reff (MDR) .
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5.4.2 The Multi-Drug Resistant TB Strain only Equilibrium

Point

This equilibrium solution is obtained by setting λs = 0 in equations (5.1)−(5.10) of the

model. The multi-drug resistant TB expressed only in terms of the equilibrium value of

the force of infection λ∗r is given by:

E2 = (V ∗, S∗, 0, 0, 0, 0, E∗, I∗r , T ∗r , R∗)

From equation (5.1) the dynamical system (5.1)−(5.10):

dV

dt
= ψΛ− (σ(λs + λr) + θ + µ)V = 0⇒ V ∗ = ψΛ

(σλ∗r + θ + µ)

From equation (5.2) the dynamical system (5.1)−(5.10):

dS

dt
= (1− ψ)Λ + θV − (λs + λr + µ)S = 0

⇒ S∗ = (1− ψ)Λ + θV ∗

(λ∗s + λ∗r + µ) = Λ[(1− ψ)σλ∗r + θ + (1− ψ)µ]
(λ∗r + µ)[σλ∗r + θ + µ]

Since λs = 0, from equation (5.3), (5.4), (5.5), and (5.6)of the dynamical system (5.1)−(5.10),

we have: H∗s = L∗s = I∗s = T ∗s = 0

From equation (5.7) the dynamical system (5.1)−(5.10):

dE

dt
=λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs − (λ+ µ)E = 0

⇒ E∗ =λ
∗
r(S∗ +H∗s + L∗s + σV ∗ + κR∗) + (1− q)ρsIs

(δ + µ) = λ∗r(S∗ + σV ∗ + κR∗)
(δ + µ)

= λ∗r
(δ + µ)

Λ(1− ψ)σλ∗r + θ + (1− ψ)µ
(λ∗r + µ)[σλ∗r + θ + µ] + σψΛ

(σλ∗r + θ + µ)

+ κI∗r
ρr(ϕ+ µ)(1− ν)δ + ϕνδ(ρr + µ+ dr)

(κλ∗r + µ)(ε+ µ)(1− ν)δ)

From equation (5.8) the dynamical system (5.1)−(5.10):

dIr
dt

= (1− ν)δE − (ρr + µ+ dr)Ir = 0

⇒ I∗r = (1− ν)δ
(ρr + µ+ dr)

E∗ ⇒ E∗ = (ρr + µ+ dr)
(1− ν)δ I∗r

From equation (5.9) the dynamical system (5.1)−(5.10):

dTs
dt

= νδE − (ϕ+ µTr = 0⇒ T ∗r = νδE∗

(ϕ+ µ) = νδ(ρr + µ+ dr)
(ϕ+ µ)(1− ν)δ I

∗
r
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From equation (5.10) the dynamical system (5.1)−(5.10):

dR

dt
= qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − (κ(λs + λr) + µ)R = 0

R∗ = (ρsI∗s + ρrI
∗
r + γ(1− η)L∗s + φT ∗s + ϕT ∗r )
((κ(λ∗s + λ∗r) + µ))

= (ρrI∗r + ϕT ∗r )
(κλ∗r + µ) = ρr(ϕ+ µ)(1− ν)δ + ϕνδ(ρr + µ+ dr)

(κλ∗r + µ)(ϕ+ µ)(1− ν)δ I∗r

Therefore, the multi-drug resistant TB-strain only equilibrium is given as:

E2 = (V ∗, S∗, 0, 0, 0, 0, E∗, I∗r , T ∗r , R∗) where,

V ∗ = ψΛ
σλ∗r + θ + µ

, S∗ = Λ[(1− ψ)σλ∗r + θ + (1− ψ)µ]
(λ∗r + µ)[σλ∗r + θ + µ] , E∗ = (ρr + µ+ dr)

(1− ν)δ I∗r ,

T ∗r = νδ(ρr + ν + dr)
(ϕ+ µ)(1− ν)δ I

∗
r , R

∗ = ρr(ϕ+ µ)(1− ν)δ + ϕνδ(ρr + µ+ dr)
(κλ∗r + µ)(ϕ+ µ)(1− ν)δ

Existence of multi-drug resistance TB-strain only equilibrium

As the multi drug resistance TB-strain only equilibrium E2 given in terms λr the existence

of the equilibrium value of the force of infection λr shows the existence of E2. Therefore,

we are going to put the conditions that λr exists.

At multi-drug resistance TB-strain only equilibrium we have:

λ∗r = cωrµ

Λ I∗r

where N∗(t) is replaced by its limiting value, N∗ = Λ
µ

⇒ λ∗r = cωrµ(1− ν)δ
Λ(ρr + µ+ dr)

E∗

= µ(θ) +mu

Λ(σψµ+ (θ + (1− ψ)µ))
(σψµ+ (θ + (1− ψ)µ))

(θ + µ)
cωr(1− ν)δ

(δ + µ)(ρr + µ+ dr)
λ∗r(S∗ + σV ∗ + κR∗)

⇒ λ∗r = µ(θ + µ)
(Λ + (θ + (1− ψ)µ)))Reff (MDR)λ∗r(S∗ + σV ∗ + κR∗)

⇒ λ∗r = e1Reff (MDR)λ∗r{
((1− ψ)σλ∗r + θ + (1− ψ)µ+ σψ(λ∗r + µ))

(λ∗r + µ)[σλ∗r + θ + µ] + e2
λ∗r

(κλ∗r + µ)}
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Where, e1 = µ(θ+µ)
[σψµ+(θ+(1−ψ)µ)] , e2 = ([ρr(ϕ+µ)(1−ν)δ+ϕνδ(ρr+µ+dr)])

(cωrµ(ϕ+µ)(1−ν)δ)

⇒λ∗r = e1Reff (MDR)λ∗r{
(σλ∗r + θ + (1− ψ)µ+ σψµ)

(λ∗r + µ)[σλ∗r + θ + µ] + e2
λ∗r

(κλ∗r + µ)}

⇒λ∗r(λ∗r + µ)(σλ∗r + e4)(κλ∗r + µ)

= e1Reffλ
∗
r(σλ∗r + e3)(κλ∗r + µ) + e2λ

∗
r(λ∗r + µ)(σλr∗+ e4)

where, e3 = θ + (1− ψ)µ+ σψµ, e4 = θ + µ

⇒σκ(λ∗r)4 + {µσκ+ κθ + µκ+ µσ}(λ∗r)3 + µ[e4 + κe4 + µσ](λ∗r)2 + µ2e4λ
∗
r

= e1Reff (MDR){e2σ(λ∗r)4 + [e2(µσ + e4) + σκ](λ∗r)3 + [e2e4µ+ (e3κ+ µσ)](λ∗r)2 + e3µλ
∗
r}

⇒{σκ−Reff (MDR)e1e2σ}(λ∗r)4 + {µσκ+ κθ + µκ+ µσ}(λ∗r)3 + {µ[e4 + κe4 + µσ]

−Reff (MDR)e1[e2e4µ+ (e3κ+ µσ)]}(λ∗r)2 + {µ2e4 −Reff (MDR)e1e3µ}λ∗r = 0

⇒D1(λ∗r)4 +D2(λ∗r)3 +D3(λ∗r)2 +D4λ
∗
r = 0 (5.22)

Where,

D1 = σκ−Reff (MDR)e1e2σ

D2 = µσκ+ κθ + µκ+ µσ −Reff (MDR)e1[e2(µσ + e4) + σκ]

D3 = µ[e4 + κe4 + µσ]−Reff (MDR)e1[e2e4µ+ (e3κ+ µσ)]

D4 = µ2e4 −Reff (MDR)e1e3µ

The solutions for the quartic polynomial (5.22) are λ∗r = 0 and D1(λ∗r)3 + D2(λ∗r)2 +

D3λ
∗
r + D4 = 0. The case λ∗r = 0 corresponds to no multi drug resistance TB and

D1(λ∗r)3 +D2(λ∗r)2 +D3λ
∗
r +D4 = 0 corresponds to the existence of at most three multi-

drug resistance TB only endemic equilibrium points.

Remark:

The TB model system (5.1)−(5.10) has:

a) one positive multi-drug resistance TB only endemic equilibrium if D2/D1 < 0, and

D3 = D4 = 0.

b) two positive multi-drug resistance TB only endemic equilibrium if D2/D1 < 0,

D3/D1 > 0 and D4 = 0.
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c) three positive multi-drug resistance TB only endemic equilibrium if D2/D1 < 0,

D3/D1 > 0 and D4/D1 < 0.

d) no positive multi-drug resistance TB only endemic equilibrium otherwise.

Theorem 5.10. The model (5.1)-(5.10) has unique multi-drug resistance TB only en-

demic equilibrium if D2/D1 < 0 and D3 = D4 = 0. That is, the model (5.1)-(5.10) has

unique drug resistance TB only endemic equilibrium λ∗r = n∗ = −D2/D1.

Proof. Since D3 = D4 = 0, from quadric polynomial (5.22), D1λr
∗4 +D2λr

∗3 +D3λr
∗2 +

D4λr
∗ = 0 we have λr

∗3 (D1λr
∗ +D2) = 0. Then the only positive multi-drug re-

sistance TB only endemic equilibrium is λ∗r = −D2/D1 . The model (5.1)-(5.10) has

unique multi-drug resistance TB only endemic equilibrium if D2/D1 < 0 and D3 =

D4 = 0. That is D2
D1

<
µσκ+κθ+µκ+µσ−Reff (MDR)e1[e2(µσ+e4)+σκ]

σκ−R2e1e2σ
< 0. This implies that, if

µσκ+κθ+µκ+µσ
e1[e2(µσ+e4)+σκ] < κ

e1e2
then µσκ+κθ+µκ+µσ

e1[e2(µσ+e4)+σκ] < Reff (MDR) < κ
e1e2

or if µσκ+κθ+µκ+µσ
e1[e2(µσ+e4)+σκ] >

κ
e1e2

then µσκ+κθ+µκ+µσ
e1[e2(µσ+e4)+σκ] > Reff (MDR) > κ

e1e2

Remark:

If 0 < q < 1 treatment of multi-drug sensitive is not 100% efficient due to non-compliance,

then there are two possible endemic equilibria for system (5.1)-(5.10), namely, E2 (only

the multi-drug resistance equilibrium), and the interior equilibrium point E3 (when both

strains exist). But there is no multi-drug sensitive only equilibrium E1 for the dynamical

system (5.1)-(5.10) and the multi-drug resistant TB-strain only equilibrium E2 in the

case 0 < q < 1 is identical in the case q = 1.

Local stability of the Multi-Drug Resistant TB Strain only Equilibrium Point

Theorem 5.11. The multi-drug resistance TB only equilibrium point E2 of Model (5.1),

(5.2), (5.7)-(5.10) is locally asymptotically stable if Reff (DS) < 1 < Reff (MDR) and

R∗ < Λ(µ+dr)
cωrκµ

Proof. The Jacobean matrix of the dynamical system (5.1), (5.2), (5.7)-(5.10) at equilib-
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rium E2 is given by:

J(E2) =



f1 0 0 a1 0 0

θ f2 0 a2 0 0

σn∗ n∗ f3 y 0 κn∗

0 0 (1− ν)δ f4 0 0

0 0 νδ 0 g5 0

0 0 0 ρr ϕ g6


Where,

n∗ = σµ(1 + κ) + κ(θ + µ)−Reff (MDR)e1κ((σµ+ θ + µ) + σ)
σκ(Reff (MDR)e1e2 − 1) , e1 = µ(θ + µ)

[σψµ+ (θ + (1− ψ)µ)]

e2 = [ρr(ϕ+ µ)(1− ν)δ + ϕνδ(ρr + µ+ dr)]
cωrµ(ϕ+ µ)(1− ν)δ , f1 = −(σn∗ + θ + µ), f2 = −(n∗ + µ),

f3 = −(δ + µ), f4 = −(ρr + µ+ dr), f5 = −(ϕ+ µ), f6 = −(κn∗ + µ), a1 = −σcωrV
∗

N∗

a2 = −cωrS
∗

N∗
, y = −cωrµΛ (S∗ + σV ∗ + κR∗)

The characteristic equation of the matrix J(E2) is given by |J(E2)− λI| = 0:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 − λ 0 0 a1 0 0

θ f2 − λ 0 a2 0 0

σn∗ n∗ f3 − λ y 0 κn∗

0 0 (1− ν)δ f4 − λ 0 0

0 0 νδ 0 g5 − λ 0

0 0 0 ρr ϕ g6 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Now we apply the Gershgorin circle theorem,[83] to determine the sign of the eigenvalues

of the characteristic equation |J(E2) − λI| = 0. From the first column of the Jacobian

matrix J(E2) the dynamical system (5.1), (5.2), (5.7)-(5.10),

|f1| = (σn∗ + θ + µ) and Σ6
i=1,i 6=1ci1 = θ + σn∗

⇒|f1| > Σ6
i=1,i 6=1ci1

From the second column of the Jacobian matrix J(E2) of the dynamical system (5.1),

(5.2), (5.7)-(5.10),

|f2| = (n∗ + µ), and Σ6
i=1,i 6=2ci2 = n∗ ⇒ |f2| > Σ6

i=1,i 6=2ci2
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From the third column of the Jacobian matrix J(E2) of the dynamical system (5.1), (5.2),

(5.7)-(5.10),

|f3| = (δ + µ), and Σ6
i=1,i 6=3ci3 = δ(1− ν) + δ(1− ν) = δ

⇒|f3| > Σ6
i=1,i 6=3ci3

From the fourth column of the Jacobian matrix J(E2) of the dynamical system (5.1),

(5.2), (5.7)-(5.10),

|f4| = ρr + µ+ drand Σ6
i=1,i 6=4ci4 = a1 + a2 + y + ρr = cωr

N∗
κR∗ + ρr

If we let N∗ = Λ
µ

, then Σ6
i=1,i 6=4ci4 = cωrµκ

Λ R∗ + ρr. ⇒ |f4| > Σ6
i=1,i 6=4ci4 if R∗ < Λ(dr+µ)

cωrµκ
.

From the fifth column of the Jacobian matrix J(E2) of the dynamical system (5.1), (5.2),

(5.7)-(5.10),

|f5| = (ϕ+ µ)and Σ6
i=1,i 6=5ci5 = ϕ⇒ |g5| > Σ6

i=1,i 6=5ci5

From the sixth column of the Jacobian matrix J(E2) of the dynamical system (5.1), (5.2),

(5.7)-(5.10),

|f6| = (κN∗ + µ)and Σ6
i=1,i 6=6ci6 = κN∗ ⇒ |f6| > Σ6

i=1,i 6=6ci6

The matrix J(E2) is a strictly column diagonally dominant matrix and also all diagonal

elements of J(E2) are negative, if R∗ < Λ(µ+dr)
cωrκµ

. Hence, all eigenvalues of J(E2) has

negative real part if Reff (DS) < 1 < Reff (MDR) and R∗ < Λ(µ+dr)
cωrκµ

.Therefore, the multi-

drug resistance TB only equilibrium E2 is locally asymptotically stable if Reff (DS) <

1 < Reff (MDR) and R∗ < Λ(µ+dr)
cωrκµ

.

Global Stability of Multi Drug Resistant TB only Endemic Equilibrium Point

Theorem 5.12. The multi-drug resistance TB only equilibrium E2 of Model (5.1), (5.2),

(5.7)-(5.10) is globally asymptotically stable if Reff (DS) < 1 < Reff (MDR) and V
V ∗
, S
S∗
, R
R∗
≤

1 and E
E∗
≤ Ir

I∗r
.

Proof. We use a graph-theoretic method as in [109] to construct a lyapunov function.
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We define functions: Q1 = V −V ∗−V ∗ln V
V ∗

, Q2 = S−S∗−S∗ln S
S∗

, Q3 = E−E∗−E∗ln E
E∗

, Q4 = Tr − T ∗r − T ∗r ln
Tr

T ∗r
, Q5 = Ir − I∗r − I∗r ln

Ir

I∗r
, Q6 = R − R∗ − R∗ln R

R∗
Where

E2 = (V ∗, S∗, E∗, T ∗r , I∗r , R∗) is the multi-drug resistant TB only endemic equilibrium.

Differentiating the functions Qifori = 1, ..., 6 with respect to time we have :

Q1
′ =

(
1− V ∗

V

)
V̇ , Q2

′ =
(

1− S∗

S

)
Ṡ, Q3

′ =
(

1− E∗

E

)
Ė,

Q4
′ =

(
1− Ir

∗

Ir

)
IrQ5

′ =
(

1− Tr
∗

Tr

)
Tr and Q6

′ =
(

1− R∗

R

)
Ṙ

Substituting their respective derivatives we get:

Q1
′ =

(
1− V ∗

V

)
{ψΛ− (σλs + θ + µ)V }

Q2
′ =

(
1− S∗

S

)
{(1− ψ) Λ + θV − (λs + µ)S}

Q3
′ =

(
1− E∗

E

)
{λr (S + σV + κR)− (δ + µ)E }

Q4
′ =

(
1− Ir

∗

Ir

)
{(1− ν) δE − (ρr + µ+ dr) Ir}

Q5
′ =

(
1− Tr

∗

Tr

)
{νδE − (ϕ+ µ)Tr}

Q6
′ =

(
1− R∗

R

)
{ρrIr + ϕTr − (κλr + µ)R}

At the endemic equilibrium point E2 we have:

ψΛ = (σλr∗ + θ + µ)V ∗, (1− ψ) Λ = −θV ∗ + (λr∗ + µ)S∗

(δ + µ) = λr
∗ (S∗ + σV ∗ + κR∗)

E∗
, (ρr + µ+ dr) = (1− ν) δE

∗

Ir
∗

(ϕ+ µ) = νδ
E∗

Tr
∗and µ = ρr

Ir
∗

R∗
+ ϕ

Tr
∗

R∗
− κλr∗

Using the inequality, 1 − x + lnx ≤ 0 for all x > 0 at the endemic equilibrium point E2

we get:

Q
′

1 ≤σV ∗λ∗r

(
Ir
I∗r
− lnV

∗

V
− IrV

I∗rV
∗

)
=: b14Q14

Q
′

2 ≤θV ∗
(
−2− ln V

V ∗
− ln S

S∗
+ S∗

S
+ V

V ∗

)
=: b21Q21
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Q
′

3 ≤λ∗r(S∗ + σV ∗ + κR∗)
(
Ir
I∗r
− E

E∗
− ln Ir

I∗r
+ ln

E

E∗

)
+ λ∗rS

∗
(
IrS

I8
rS
∗ −

Ir
I∗r
− ln S

S∗

)

+ σλ∗r

(
IrV

I∗rV
∗ −

Ir
I∗r
− ln V

V ∗

)
+ κλ∗rR

∗
(
IrR

I∗rR
∗ −

Ir
I∗r
− ln R

R∗

)

=: b34Q34 + b31Q31 + b32Q32 + b36Q36

Q
′

4 ≤(1− ν)δE∗
(
E

E∗
− Ir
I∗r
− ln E

E∗
+ ln

Ir
I∗r

)
=: b43Q43

Q
′

5 ≤νδE∗
(
E

E∗
− Tr
T ∗r
− ln E

E∗
+ ln

Tr
T ∗r

)
=: b53Q53

Q
′

6 ≤ρrI∗r

(
Ir
I∗r
− ln Ir

I∗r
+ ln

R

R∗
− R

R∗

)
+ ϕT ∗r

(
Tr
T ∗r
− ln Tr

T ∗r
+ ln

R

R∗
− R

R∗

)

+ κλ∗rR
∗
(
−ln R

R∗
− ln Ir

I∗r
− 2 + R

R∗
+ Ir
I∗r

)
=: b64aQ64a + b64aQ64a + b65Q65

Where, b14 = b32 = σλ∗rV
∗, b21 = θV ∗, b31 = λ∗rS

∗, b34 = λ∗r(S∗+σV ∗+κR∗), b36 = κλ∗rR
∗,

b43 = (1− ν)δE∗, b53 = νδE∗, b64a = ρrI
∗
r , b64b = κλrR

∗, b65 = ϕT ∗r , and all other bij = 0.

With the constants bij above and B = [bij] for i, j = 1, ..., 6, 5a, 5b, we construct the

directed graph G(B) as Figure 5.3.

Figure 5.3: The digraph G(B) for dynamical system (5.1),(5.2),(5.7)-(5.10).

The associated weighted digraph G(B) (figure 5.3) has six vertices. Along the cycle in

figure 5.3, G34 + G43 = ( Ir

I∗r
− E

E∗
− ln Ir

I∗r
+ ln E

E∗
) + ( E

E∗
− Ir

I∗r
− ln E

E∗
+ ln Ir

I∗r
) = 0 and for

the other cycles in figure 5.3, ΣGij ≤ 0, if V
V ∗
, S
S∗
, R
R∗
≤ 1 and E

E∗
≤ Ir

I∗r
. By Proposition

1.3 of [109], there exists ci > 0, i = 1, . . . , 6 such that Q = Σ6
i=1ciQi is a Lyapunov

function for equations (5.1),(5.2),(5.7)-(5.10). The relations between c′is can be derived

from Theorems 3.3 and 3.4 of [109] such that:

130



b21 > 0 and d+(1) = 1 implies c2b21 = Σ6
k=1c1b1k

⇒ c2b21 = c1b14 ⇒ c2 = c1
b14

b21
.

b32 > 0 and d+(2) = 1 implies c3b32 = Σ6
k=1c2b2k ⇒ c3b32 = c2b21

⇒ c3 = c2
b21

b32
= c1

b14

b32
.

b36 > 0 and d+6) = 1 implies c3b36 = Σ6
k=1c6b6k

⇒c5b36 = c6(b64a + b64b + b65)⇒ c6 = c5
b36

(b64a + b64b + b65)

⇒c6 = c1
b14

b32

(b34 + b31 + b32 + b36)
b53

b36

(b64a + b64b + b65)

b53 > 0 and d−(5) = 1 implies c5b43 = Σ6
k=1ckbk5

⇒c5b53 = c6b65 ⇒ c5 = c6
(b65

b53

⇒c5 = c1
b14

b32

(b34 + b31 + b32 + b36)
b53

b36

(b64a + b64b + b65)
b65

b53

b43 > 0 and d−(4) = 1 implies c4b43 = Σ6
k=1ckbk4

⇒c4b43 = c1b14 + c3b34 + c6(b64a + b64b)

⇒c4b43 = c1b14 + c1
b14b34

b32
+ c1

b14

b32

(b34 + b31 + b32 + b36)
b53

b36(b64a + b64b

(b64a + b64b + b65)

⇒c4 = c1
1
b43

(b14 + b14b34

b32
+ b14b36b64(b34 + b31 + b32 + b36)

b32b53(b64a + b64b + b65) )

Therefore, Q = c1Q1 + c2Q2 + c3Q3 + c4Q4 + c5Q5 + c6Q6 is a Lyapunov function for

(5.1), (5.2), (5.7)–(5.10). Therefore, E2 is globally asymptotically stable in the interior

of Ω whenReff (MDR) > 1.

5.4.3 The Endemic Equilibrium where both TB strains co-exist

The endemic equilibrium where both TB strains co-exist is given as:

E3 = (V ∗, S∗, H∗s , L∗s, I∗s , T ∗s , E∗, I∗r , T ∗r , R∗)

From equation (5.1) of the dynamical system (5.1)−(5.10):

dV

dt
= ψΛ− (σ(λs + λr) + θ + µ)V = 0⇒ V ∗ = ψΛ

(σ(λ∗s + λ∗r) + θ + µ)
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From equation (5.2) of the dynamical system (5.1)−(5.10):

dS

dt
=(1− ψ)Λ + θV − (λs + λr + µ)S = 0

⇒ S∗ =(1− ψ)Λ + θV ∗

(λ∗s + λ∗r + µ) = Λ[(1− ψ)σ(λ∗s + λ∗r) + θ + (1− ψ)µ]
(λ∗s + λ∗r + µ)[σ(λ∗s + λ∗r) + θ + µ]

From equation (5.3) of the dynamical system (5.1)−(5.10):

dHs

dt
= λsS + σλsV + κλsR− (α + λr + µ)Hs = 0⇒ H∗s = λ∗s(S∗ + σV ∗ + κR∗)

(α + λ∗r + µ)

From equation (5.4) of the dynamical system (5.1)−(5.10):

dLs

dt
= αε(1− p)Hs − (λr + γ + µ)Ls = 0

⇒ L∗s = αε(1−p)H∗s
(λ∗r+γ+µ) = αε(1−p)(λ∗r+γ+µ)(ρs+µ+ds)

(γηαε(1−p)+(λ∗r+γ+µ)α(1−ε)(1−p))I∗s

From equation (5.5) of the dynamical system (5.1)−(5.10):

dIs

dt
= γηLs + α(1− ε)(1− p)Hs − (ρs + µ+ ds)Is = 0

⇒ I∗s = (γηL∗s+α(1−ε)(1−p)H∗s )
(ρs+µ+ds

) = (γηαε(1−p)+(λ∗r+γ+µ)α(1−ε)(1−p))
(λ∗r+γ+µ)(ρs+µ+ds) H∗s

⇒ H∗s = (λ∗r+γ+µ)(ρs+µ+ds)
(γηαε(1−p)+(λ∗r+γ+µ)α(1−ε)(1−p))I

∗
s

From equation (5.6) of the dynamical system (5.1)−(5.10):

dTs

dt
= αpHs − (φ+ µ)Ts = 0

⇒ T ∗s = αpH∗s
(φ+µ) = αp(λ∗r+γ+µ)(ρs+µ+ds)

(φ+µ)[γηαε(1−p)+(λ∗r+γ+µ)α(1−ε)(1−p)]I
∗
s

From equation (5.7) of the dynamical system (5.1)−(5.10):

dE
dt

= λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs − (δ + µ)E = 0

⇒ E∗ = λ∗r(S∗+H∗s +L∗s+σV ∗+κR∗)+(1−q)ρsI∗s
(δ+µ)

From equation (5.8) of the dynamical system (5.1)−(5.10):

dIr

dt
= (1− ν)δE − (ρr + µ+ dr)Ir = 0

⇒ I∗r = (1−ν)δE∗
(ρr+µ+dr) ⇒ E∗ = (ρr+µ+dr)I∗r

(1−ν)δ

From equation (5.9) of the dynamical system (5.1)−(5.10):
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dTr

dt
= νδE − (ϕ+ µ)Tr = 0 ⇒ T ∗r = νδE∗

(ϕ+µ) = ν(ρr+µ+dr)I∗r
(ϕ+µ)(1−ν)

From equation (5.10) of the dynamical system (5.1)−(5.10):

dR

dt
=qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − (κ(λs + λr) + µ)R = 0

⇒ R∗ =(ρsI∗s + ρrI
∗
r + γ(1− η)L∗s + φT ∗s + ϕT ∗r )
(κ(λ∗s + λ∗r) + µ)

⇒ R∗ = 1
(κ(λ∗s + λ∗r) + µ)(ρs + γ(1− η)αε(1− p)(ρs + µ+ ds)(λ∗r + γ + µ)

γηαε(1− p) + (λ∗rγ + µ)α(1− ε)(1− p)

+ φαp(ρs + µ+ ds)(λ∗r + γ + µ)
(φ+ µ)[γηαε(1− p) + (λ∗r + γ + µ)α(1− ε)(1− p)])I

∗
s

+ 1
(κ(λ∗s + λ∗r) + µ)(ρr + ϕνδ[(ρr + µ+ dr)]

(ϕ+ µ)(1− ν)δ )I∗r

Thus, the endemic equilibrium where both TB strains co-exist is given as:

E3 = (V ∗, S∗, H∗s , L∗s, I∗s , T ∗s , E∗, I∗r , T ∗r , R∗)

Where

V ∗ = ψΛ
σ(λ∗s + λ∗r) + θ + µ

, S∗ = Λ[(1− ψ)σ(λ∗s + λ∗r) + θ + (1− ψ)µ]
(λ∗s + λ∗r + µ)[σ(λ∗s + λ∗r) + θ + µ] ,

H∗s = (λ∗r + γ + µ)(ρs + µ+ ds)
γηαε(1− p) + (ρ∗r + γ + µ)α(1− ε)(1− p)I

∗
s ,

L∗s = αε(1− p)(λ∗r + γ + µ)(ρs + µ+ ds)
γηαε(1− p) + (λ∗r + γ + µ)α(1− ε)(1− p)I

∗
s

T ∗s = αp(λ∗r + γ + µ)(ρs + µ+ ds)
(φ+ µ)[γηαε(1− p) + (λ∗r + γ + µ)α(1− ε)(1− p)]

E∗ =λ
∗
r(S∗ +H∗s + L∗s + σV ∗ + κR∗) + (1− q)ρsI∗s

(δ + µ) , T ∗r = νδ(ρr + µ+ dr)I∗r ]
(ϕ+ µ)(1− ν)δ

R∗ = 1
(κ(λ∗s + λ∗r) + µ)(ρs + γ(1− η)αε(1− p)(ρs + µ+ ds)(λ∗r + γ + µ)

γηαε(1− p) + (λ∗rγ + µ)α(1− ε)(1− p)

+ φαp(ρs + µ+ ds)(λ∗r + γ + µ)
(φ+ µ)[γηαε(1− p) + (λ∗r + γ + µ)α(1− ε)(1− p)])I

∗
s

+ 1
(κ(λ∗s + λ∗r) + µ)(ρr + ϕνδ[(ρr + µ+ dr)]

(ϕ+ µ)(1− ν)δ )I∗r

Local Stability of the endemic equilibrium where both TB strains co-exist

Theorem 5.13. The equilibrium point where both TB strains co-exist E3 of the dynamical

system (5.1)−(5.10) is locally asymptotically stable if Reff (DS) > 1, Reff (MDR) > 1

and R∗ < min{Λ(ds+µ)
cωsκµ

, Λ(µ+dr)
cωrκµ

}.
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Proof. The Jacobian matrix of the dynamical system (5.1)−(5.10) at endemic equilibrium

where both TB strains co-exist E3 is given by:

J(E3) =



d1 0 0 0 e1 0 0 h1 0 0

θ d2 0 0 e2 0 0 h2 0 0

σλ∗s λ∗s d3 0 e3 0 0 h3 0 κλ∗s

0 0 e4 d4 0 0 0 h4 0 0

0 0 e5 ηγ d5 0 0 0 0

0 0 pα 0 0 d6 0 0 0 0

σλ∗r λ∗r λ∗r λ∗r e6 0 d7 h5 0 κλ∗r

0 0 0 0 0 0 e7 d8 0 0

0 0 0 0 0 0 νδ 0 d9 0

0 0 0 e8 qρs φ 0 ρr ϕ d10


Where, d1 = −(σ(λ∗s + λ∗r) + θ + µ), d2 = −(λ∗s + λ∗r + µ), d3 = −(λ∗r + α + µ),

d4 = −(λ∗r + γ + µ), d5 = −(ρs + µ+ ds), d6 = −(φ+ µ), d7 = −(δ + µ),

d8 = −(ρr +µ+ dr), d9 = −(ϕ+µ), d10 = −(κ(λ∗s +λ∗r) +µ), e1 = −σcωsV ∗

N∗
, e2 = − cωsS∗

N∗
,

e3 = cωs

N∗
(σV ∗+S∗+κR∗), e4 = αε(1−p), e5 = α(1−ε)(1−p), e6 = (1−q)ρs, e7 = (1−ν)δ,

h1 = −σcωrV ∗

N∗
, h2 = − cωrS∗

N∗
, h3 = − cωrH∗s

N∗
, h4 = − cωrL∗s

N∗
, h5 = cωr

N∗
(σV ∗ + S∗ + κR∗),

The characteristic equation will be:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 0 0 0 e1 0 0 h1 0 0

θ s2 0 0 e2 0 0 h2 0 0

σλ∗s λ∗s s3 0 e3 0 0 h3 0 κλ∗s

0 0 e4 s4 0 0 0 h4 0 0

0 0 e5 ηγ s5 0 0 0 0

0 0 pα 0 0 s6 0 0 0 0

σλ∗r λ∗r λ∗r λ∗r e6 0 s7 h5 0 κλ∗r

0 0 0 0 0 0 e5 s8 0 0

0 0 0 0 0 0 νδ 0 s9 0

0 0 0 e8 qρs φ 0 ρr ϕ s10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

where, s1 = d1 − λ, s2 = d2 − λ, s3 = d3 − λ, s4 = d4 − λ, s5 = d5 − λ, s6 = d6 − λ,

s7 = d7 − λ, s8 = d8 − λ, s9 = d9 − λ, s10 = d10 − λ.

Now we apply the Gershgorin circle theorem,[83] to determine the sign of the eigenvalues
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of the characteristic equation |J(E3)− λI| = 0.

From the fifth column of the Jacobean matrix J(E3), |d5| = ρs +µ+ ds and Σ10
i=1,i 6=5ci5 =

e1+e2+e3+(1−q)ρs+qρs = cωs

N∗
κR∗+ρs. If we useN∗ = Λ

µ
, then Σ10

i=1,i 6=5ci5 = cωsµκ
Λ R∗+ρs.

Therefore, |d5| > Σ10
i=1,i 6=5ci5 if R∗ < Λ(µ+ds)

cωsµκ
.

From the eighth column of the Jacobian matrix J(E3):

|d8| = ρr+µ+dr and Σ10
i=1,i 6=5ci8 = h1 +h2 +h3 +h4 +h5 +ρr = cωr

N∗
κR∗+ρr. If we take N∗

at its limit value, N∗ = Λ
µ

, then Σ10
i=1,i 6=8ci8 = cωsµκ

Λ R∗ + ρr. Therefore, |d8| > Σ10
i=1,i 6=8ci8

if R∗ < Λ(µ+dr)
cωµκ

.

For the remaining column of the Jacobian matrix J(E3):

|di| > Σ10
i=1,i 6=jcij for j = {1, . . . , 10} − {5, 8}

Implies, the radius of the disc is Ri = Σ10
i=1,j 6=icij < |cii| for i, j = {1, . . . , 10} if R∗ <

min{Λ(ds+µ)
cωsκµ

, Λ(µ+dr)
cωrκµ

}. Therefore, the matrix J(E3) is a strictly column diagonally dom-

inant matrix. And also all diagonal elements of J(E3) are negative. Hence, all eigen-

values of J(E3) has negative real part if Reff (DS) > 1, Reff (MDR) > 1 and R∗ <

min{Λ(ds+µ)
cωsκµ

, Λ(µ+dr)
cωrκµ

}. Therefore, the interior equilibrium E3 is locally asymptotically

stable if Reff (DS) > 1, Reff (MDR) > 1 and R∗ < min{Λ(ds+µ)
cωsκµ

, Λ(µ+dr)
cωrκµ

}.

Global stability the endemic equilibrium where both TB strains co-exist

Theorem 5.14. The the endemic equilibrium where both TB strains co-exist E3 of the

system (5.1)−(5.10) is globally asymptotically stable if Reff (DS) > 1, Reff (MDR) > 1,
V
V ∗

, S
S∗

, R
R∗
≤ 1, Hs

H∗s
≤ Is

I∗s
and E

E∗
≤ Ir

I∗r
.

Proof. We use a graph-theoretic method as in [109] to construct a lyapunov function.

Define the functions:

B1 = V − V ∗ − V ∗ln V
V ∗

, B2 = S − S∗ − S∗ln S
S∗

, B3 = Hs − H∗s − H∗s ln
Hs

H∗s
, B4 =

Ls−L∗s−L∗slnLs

L∗s
B5 = Is− I∗s − I∗s ln Is

I∗s
, B6 = Ts−T ∗s −T ∗s ln Ts

T ∗s
, B7 = E−E∗−E∗ln E

E∗

B8 = Tr − T ∗r − T ∗r ln
Tr

T ∗r
, B9 = Ir0 − I∗r − I∗r ln

Ir

I∗r
, B10 = R − R∗ − R∗ln R

R∗
Where

E3 = (V ∗, S∗, H∗s , L∗s, T ∗s , I∗s , E∗, T ∗r , I∗r , R∗) is the endemic equilibrium where both TB

strains co-exist.

Differentiating the function Bi, i = 1, . . . , 10 with respect to time,
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B
′
1 = (1− V ∗

V
)V ′ , B

′
2 = (1− S∗

S
)S ′ , B

′
3 = (1− H∗s

Hs
)H ′s,

B
′
4 = (1− L∗s

Ls
)L′s, B

′
5 = (1− I∗s

Is
)I ′s, B

′
6 = (1− T ∗s

Ts
)T ′s,

B
′
7 = (1− E∗

E
)E ′ , B

′
8 = (1− I∗r

Ir
)I ′r, B

′
9 = (1− T ∗r

Tr
)T ′r ,

and B
′
10 = (1− r∗

R
)R′

Substituting their derivatives we have:

B
′

1 =
(

1− V ∗

V

)
{ψΛ− (σ(λs + λr) + θ + µ)V }

B
′

2 =
(

1− S∗

S

)
{(1− ψ)Λ + θV − (λs + λr + µ)S}

B
′

3 =
(

1− H∗s
Hs

)
{λs(S + σV + κR)− (α + µ+ λr)Hs}

B
′

4 =
(

1− L∗s
Ls

)
{αε(1− p)Hs − (γ + µ+ λr)Ls}

B
′

5 =
(

1− I∗s
Is

)
{γηLs + α(1− ε)(1− p)Hs − (ρs + µ+ ds)Is}

B
′

6 =
(

1− T ∗s
Ts

)
{αpHs − (φ+ µ)Ts}

B
′

7 =
(

1− E∗

E

)
{λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs − (δ + µ)E}

B
′

8 =
(

1− I∗r
Ir

)
{(1− ν)δE − (ρr + µ+ dr)Ir}

B
′

9 =
(

1− T ∗r
Tr

)
{ν degE − (ϕ+ µ)Tr}

B
′

10 =
(

1− r∗

R

)
{qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − (κ(λs + λr) + µ)R}

At the endemic equilibrium point E3 we have:

ψΛ = (σ(λ∗s + λ∗r) + θ + µ)V ∗, (1− φ)Λ = −θV ∗ + (λ∗s + λ∗r + µ)S∗

(α + µ) = λ∗s(S∗ + σV ∗ + κR∗)
H∗s

− λ∗r, (γ + µ) = αε(1− p)H∗s
L∗s

− λ∗r

(ρs + µ+ ds) = γη
L∗s
I∗s

+ α(1− ε)(1− p)H
∗
s

I∗s
, (φ+ µ) = αp

H∗s
T ∗s

,

(ρr + µ+ dr) = (1− ν)δE
∗

I∗r
, (ϕ+ µ) = νδ

E∗

T ∗r

(δ + µ) = λ∗r(S∗ +H∗s + L∗s + σV ∗ + κR∗)
E∗

+ (1− q)ρs
I∗s
E∗

and

µ = qρs
I∗s
R∗

+ γ(1− η)L
∗
s

R∗
+ φ

T ∗s
R∗
− κλ∗s + ρr

I∗r
R∗

+ φ
T ∗r
R∗
− κλ∗r

Using the inequality 1− x+ lnx ≤ 0, for all x > 0 and the endemic equilibrium point E3
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we have:

B
′

1 =
(

1− V ∗

V

)
{(σ(λ∗s + λ∗r) + θ + µ)V ∗ − (θ(λs + λr) + θ + µ)V }

=− (θ + µ)(V − V ∗)2

V
+ cσωs

N∗
V ∗I∗s

(
1− IsV

I∗sV
∗ −

V ∗

V
+ Is
I∗s

)

+ cσωr
N∗

V ∗I∗r

(
1− IrV

I∗rV
∗ −

V ∗

V
+ Ir
I∗r

)

≤cσωs
N∗

V ∗I∗s

(
1− IsV

I∗sV
∗ −

V ∗

V
+ Is
I∗s

)
+ cσωr

N∗
V ∗I∗r

(
1− IrV

I∗rV
∗ −

V ∗

V
+ Ir
I∗r

)

≤cσωs
N∗

V ∗I∗s

(
1− IsV

I∗sV
∗ −

V ∗

V
+ Is
I∗s

)
+ cσωr

N∗
V ∗I∗r

(
1− IrV

I∗rV
∗ −

V ∗

V
+ Ir
I∗r

)

≤σV ∗λ∗s

(
−ln Is

I∗s
+ ln

V ∗

V
− V ∗

V
+ Is
I∗s

)
+ σV ∗λ∗r

(
Ir
I∗r
− lnV

∗

V
− IrV

I∗rV
∗

)

= : a15G15 + a18G18

B
′

2 =
(

1− S∗

S

)
{−θV ∗ + (λ∗s + λ∗r + µ)S∗ + θV − (λs + λr + µ)S}

=− µ(S − S∗)2

S
+ θV ∗

(
S∗

S
− 1− V S∗

V ∗S
+ V

V ∗

)
+ cσωs

N∗
S∗I∗s

(
I∗s −

IsS

S∗
− S∗I∗s

S
+ Is

)
+ cσωr

N∗
S∗I∗r

(
I∗r −

IrS

S∗
− S∗I∗r

S
+ Ir

)
≤θV ∗

(
S∗

S
− 2− lnV S

∗

V ∗S
+ V

V ∗

)
+ cσωs

N∗
S∗I∗s

(
1− IsS

S∗I∗s
− S∗

S
+ Is
I∗s

)

+ cσωr
N∗

S∗I∗r

(
1− IrS

S∗I∗r
− S∗

S
+ Ir
I∗r

)

≤θV ∗(S
∗

S
− 2− lnV S

∗

V ∗S
+ V

V ∗
) + S∗λ∗s

(
−ln Is

I∗s
+ ln

S∗

S
− S∗

S
+ Is
I∗s

)

+ S∗λ∗r

(
−ln Ir

I∗r
+ ln

S∗

S
− S∗

S
+ Ir
I∗r

)

=a21G21 + a25G25 + a28G28

B
′

3 =
(

1− H∗s
HS

)
{λs(S + σV + κR)− λrHs − λ∗s(S∗ + σV ∗ + κR∗)Hs

H∗s
+ λ∗rHs}

=λ∗sS∗H∗s
(

1− Hs∗

Hs

)(
λsS

λ∗sS
∗ −

Hs

H∗s

)
+ σV ∗λ∗sH

∗
s

(
1− H∗s

Hs

( λsV
V ∗λ∗s

− Hs

H∗s

)

+ κR∗λ∗sH
∗
s

(
1− H∗s

Hs

)(
λsR

R∗λ∗s
− Hs

H∗s

)
+ λ∗rH

∗
s

(
Hs

H∗s
− 1

)
{1− λr

λ∗r
}

≤λ∗sS∗
(
λsS

λ∗sS
∗ −

Hs

H∗s
− ln λsS

λ∗sS
∗
H∗s
Hs

)
+ σV ∗λ∗s

(
λsV

V ∗λ∗s
− Hs

H∗s
− ln λsV

V ∗λ∗s

H∗s
Hs

)

+ κR∗λ∗s

(
λsR

R∗λ∗s
− Hs

H∗s
− ln λsR

R∗λ∗s

H∗s
Hs

)
+ λ∗rH

∗
s

(
Hs

H∗s
− 1− Hs

H∗s

λr
λ∗r

+ λr
λ∗r

)
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=λ∗sS∗
(
IsS

I∗sS
∗ −

Is
I∗s
− ln S

S∗

)
+ σV ∗λ∗s

(
IsV

V ∗I∗s
− Is
I∗s
− ln V

V ∗

)
+ κR∗λ∗s

(
IsR

R∗I∗s
− Is
I∗s
− ln R

R∗

)

+ λ∗sS
∗
(
Is
I∗s
− Hs

H∗s
+ ln

Hs

H∗s
− ln Is

I∗s

)
+ σV ∗λ∗s

(
Is
I∗s
− Hs

H∗s
+ ln

Hs

H∗s
− ln Is

I∗s

)

+ κR∗λ∗s

(
Is
I∗s
− Hs

H∗s
+ ln

Hs

H∗s
− ln Is

I∗s

)
+ λ∗rH

∗
s

(
Hs

H∗s
− 1− Hs

H∗s

λr
λ∗r

+ λr
λ∗r

)

≤λ∗sS∗
(
IsS

I∗sS
∗ −

Is
I∗s
− ln S

S∗

)
+ σV ∗λ∗s

(
IsV

I∗sV
8 −

Is
I∗s
− ln V

V ∗

)
+ κR∗λ∗s

(
IsR

IssR
∗ −

Is
I∗s
− lnR

R

)

+ (S∗ + σV ∗ + κR∗)λ∗s
(
Is
I∗s
− Hs

H∗s
+ ln

Hs

H∗s
− ln Is

I∗s

)
+ λ∗sH

∗
s

(
Hs

H∗s
− 1− Hsλr

H∗sλ
∗
r

)

= : a32G32 + a31G31 + a310G310 + a35G35 + a38G38

B
′

4 =
(

1− L∗s
Ls

)
{αε(1− p)Hs − λrLs − αε(1− p)H∗s

Ls
L∗s

+ λ∗rLs}

=αε(1− p)
(

1− L∗s
Ls

)(
Hs −

H∗s
L∗s

Ls

)
+ λ∗rL

∗
s

(
Ls
L∗s
− 1

)
{1− λr

λ∗r

=αε(1− p)H∗s
(

1− Ls
L∗s
− L∗s
Ls

Hs

H∗s
+ Hs

H∗s

)
+ λ∗rL

∗
s

(
Ls
L∗s
− 1− Ls

L∗s

λr
λ∗r

+ λr
λ∗r

)

≤αε(1− p)H∗s
(
−Ls
L∗s
− lnL

∗
s

Ls

Hs

H∗s
+ Hs

H∗s

)
+ λ∗rL

∗
s

(
Ls
L∗s
− 2− lnLs

L∗s

λr
λ∗r

+ λr
λ∗r

)

≤αε(1− p)H∗s
(
−Ls
L∗s

+ ln
Ls
L∗s
− lnHs

H∗s
+ Hs

H∗s

)
λ∗rL

∗
s

(
ln
Ls
L∗s
− 2− lnLsλr

L∗sλ
∗
r

+ λr
λ∗r

)

= : a43G43 + a48G48

B
′

5 = (1− I∗s
Is

)γηLs + α(1− ε)(1− p)Hs − [γηL∗s + α(1− ε)(1− p)H∗s ]ln Is
I∗s

= γηL∗s(1−
Is
I∗s
− I∗s
Is

Ls
L∗s

+ Ls
L∗s

) + α(1− ε)(1− p)H∗s (1− Is
I∗s
− I∗s
Is

Hs

H∗s
+ Hs

H∗s
)

≤ γηL∗s(−
Is
I∗s
− lnI

∗
s

Is

Ls
L∗s

+ Ls
L∗s

) + α(1− ε)(1− p)H∗s (− Is
I∗s
− lnI

∗
s

Is

Hs

H∗s
+ Hs

H∗s
)

≤ γηL∗s(−
Is
I∗s

+ ln
Is
I∗s
− lnLs

L∗s
+ Ls
L∗s

) + α(1− ε)(1− p)H∗s (− Is
I∗s

+ ln
Is
I∗s
− lnHs

H∗s
+ Hs

H∗s
)

=: a54G54 + a53G53

B
′

6 =
(

1− T ∗s
Ts

)
{αpHs − αpH∗s

Ts
T ∗s
} = (φ+ µ)T ∗s

(
1− T ∗s

Ts

)(
Hs

H∗s
− Ts
T ∗s

)

=(φ+ µ)T ∗s
(
Hs

H∗s
− Ts
T ∗s
− T ∗s
Ts

Hs

H∗s
+ 1

)
≤ (φ+ µ)T ∗s

(
Hs

H∗s
− lnHs

H∗s
− Ts
T ∗s

+ ln
Ts
T ∗s

)

= : a63G63
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B
′

7 =(1− E∗

E
)(λr(S +Hs + Ls + σV + κR) + (1− q)ρsIs

− λ∗r(S∗ +H∗s + L∗s + σV ∗ + κR∗)E
∗

E
− (1− q)ρsI∗s

E∗

E
)

=λ∗rS∗(
IrS

I∗rS
∗ −

E

E∗
+ 1− E∗

E

IrS

I∗rS
∗ ) + σλ∗rV

∗( IrV
I∗rV

∗ −
E

E∗
+ 1− IrV

I∗rV
∗
E∗

E

+ λ∗rH
∗
s ( IrHs

I∗rH
∗
s

− E

E∗
+ 1− E∗

E

IrHs

I∗rH
∗
s

) + λ∗rL
∗
s(
IrLs
I∗rL

∗
s

− E

E∗
− lnE

∗

E

IrLs
I∗rL

∗
s

)

+ κλ∗rR
∗( IrR
I∗rR

∗ −
E

E∗
− 1− IrR

I∗rR
∗
E∗

E
) + (1− q)ρsI∗s ( Is

I∗s
− E

E∗
− Is
I∗s

E∗

E
+ 1)

≤λ∗rS∗(
IrS

I∗rS
∗ −

E

E∗
− lnE

∗

E

IrS

I∗rS
∗ ) + σλ∗rV

∗( IrV
I∗rV

∗ −
E

E∗
− ln IrV

I∗rV
∗
E∗

E
)

+ κλ∗rR
∗( IrR
I∗rR

∗ −
E

E∗
− ln IrR

I∗rR
∗
E∗

E
) + λ∗rH

∗
s ( IrHs

I∗rH
∗
s

− E

E∗
− lnE

∗

E

IrHs

I∗rH
∗
s

)

+ λ∗rL
∗
s(
IrLs
I∗rL

∗
s

− E

E∗
− lnE

∗

E

IrLs
I∗rLs

∗ ) + (1− q)ρsI∗s ( Is
I∗s
− E

E∗
− ln Is

I∗s

E∗

E
)

=λ∗rS∗(
IrS

I∗rS
∗ −

Ir
I∗r

+ Ir
I∗r
− E

E∗
− lnS/S∗ − ln Ir

I∗r
+ ln

E

E∗
)

+ σλ∗rV
∗( IrV
I∗rV

∗ −
Ir
I∗r

+ Ir
I∗r
− E

E∗
− ln V

V ∗
− ln Ir

I∗r
+ ln

E

E∗
)

+ κλ∗rR
∗( IrR
I∗rR

∗ −
Ir
I∗r

+ Ir
I∗r
− E

E∗
− ln R

R∗
− ln Ir

I∗r
+ ln

E

E∗
)

+ λ∗rH
∗
s ( IrHs

I∗rH
∗
s

− Ir
I∗r

+ Ir
I∗r
− E

E∗
− ln IrHs

I∗rH
∗
s

+ ln
E

E∗
)

+ λ∗rL
∗
s(
IrLs
I∗rL

∗
s

− Ir
I∗r

+ Ir
I∗r
− E

E∗
− ln IrLs

I∗rLs
∗ + ln

E

E∗
)

+ (1− q)ρsI∗s ( Is
I∗s
− E

E∗
− ln Is

I∗s
+ ln

E

E∗
)

≤λ∗r(S∗ + σV ∗ + κR∗ +H∗s + L∗s)(
Ir
I∗r
− E

E∗
− ln Ir

I∗r
+ ln

E

E∗
)

+ λ∗rS
∗( IrS
I∗rS

∗ )−
Ir
I∗r
− ln S

S∗
) + σλ∗rV

∗( IrV
I∗rV

∗ −
Ir
I∗r
− lnV/V ∗)

+ κλ∗rR
∗( IrR
I∗rR

∗ −
Ir
I∗r
− ln R

R∗
) + λ∗rH

∗
s ( IrHs

I∗rH
∗
s

)− Ir
I∗r
− lnHs

H∗s
)

+ λ∗rL
∗
s(
IrLs
Ir∗L∗s

− Ir
I∗r
− lnLs

L∗s
) + (1− q)ρsI∗s ( Is

I∗s
− E

E∗
− ln Is

I∗s
+ ln

E

E∗
)

= : a78G78 + a72G72 + a71G71 + a73G73 + a74G74 + a710G710 + a75G75
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B
′

8 =(1− I∗r
Ir

)((1− ν)δE − [(1− ν)δE∗] Ir
I∗r

) = (1− ν)δE∗(1− I∗r
Ir

)( E
E∗
− Ir
I∗r

)

=(1− ν)δE∗(1 + E

E∗
− Ir
I∗r
− I∗r
Ir

E

E∗
) ≤ (1− ν)δE∗( E

E∗
− Ir
I∗r
− lnI

∗
r

Ir

E

E∗
)

=(1− ν)δE∗( E
E∗
− Ir
I∗r
− ln E

E∗
+ ln

Ir
I∗r

) =: a87G87

B
′

9 =(1− T ∗s
Ts

)(νδE − νδE∗ Tr
T ∗r

) = νδE∗( E
E∗
− Tr
T ∗r
− 1− T ∗s

Ts

E

E∗
)

=νδE∗( E
E∗
− Tr
T ∗r
− lnT

∗
s

Ts

E

E∗
) ≤ νδE∗( E

E∗
− Tr
T ∗r
− ln E

E∗
+ ln

Tr
T ∗r

) =: a97G97

B
′

10 =(1− R∗

R
){qρsIs + ρrIr + γ(1− η)Ls + φTs + ϕTr − κ(λs + λr)R

− qρsI∗s + γ(1− η)L∗s + φT ∗s − κλ∗sR∗ + ρrI
∗
r + ϕT ∗r − κλ∗rR∗)

R

R∗
}

=ρsI∗s ( Is
I∗s

+ 1− Is
I∗s

R∗

R
− R

R∗
) + γ(1− η)L∗s(1−

R

R∗
− Ls
L∗s

R∗

R
+ Ls
L∗s

)

+ φT ∗s (1− R

R∗
− Ts
T ∗s

R∗

R
+ Ts
T ∗s

) + κλ∗sR
∗( R
R∗
− 1− Is

I∗s

R

R∗
+ Is
I∗s

)

+ ρrI
∗
r ( Ir
I∗r
− R∗

R

Ir
I∗r
− R

R∗
+ 1) + ϕT ∗r ( Tr

T ∗r
− R∗

R

Tr
T ∗r
− R

R∗
+ 1)

+ κλ∗rR
∗( RIr
R∗I∗r

) + 1− R

R∗
− Ir
I∗r

)

≤ρsI∗s ( Is
I∗s
− ln Is

I∗s
+ ln

R

R∗
− R

R∗
) + γ(1− η)L∗s(−

R

R∗
− lnLs

L∗s

R∗

R
+ Ls
L∗s

)

+ φT ∗s (− R

R∗
− ln Ts

T ∗s

R∗

R
+ Ts
T ∗s

) + ϕT ∗r ( Tr
T ∗r
− ln R

R∗
Tr
T ∗r
− R

R∗
)

+ κλ∗sR
∗( R
R∗
− 2− ln R

R∗
Is
I∗s

+ Is
I∗s

) + ρrI
∗
r ( Ir
I∗r
− ln R

R∗
Ir
I∗r
− R

R∗
)

+ κλ∗rR
∗( RIr
R∗I∗r

− 1 + R

R∗
+ Ir
I∗r

)

=ρsI∗s ( Is
I∗s
− ln Is

I∗s
+ ln

Is
I∗s
− R

R
) + γ(1− η)L∗s(−

R

R
+ ln

R

R
− lnLs

L∗s
+ Ls
L∗s

)

+ φT ∗s (−R
R

+ ln
R

R
− ln Ts

T ∗s
+ Ts
T ∗s

) + κλ∗sR
∗(R
R
− 2− lnR

R
+ Is
I∗s

)

+ ρ∗rI
∗
r ( Ir
I∗r
− ln Ir

I∗r
+ ln

R

R
− R

R
) + ϕT ∗r

(
Tr
T ∗r
− ln Tr

T ∗r
+ ln

R

R
− R

R

)

+ κλ∗rR
∗
(
−lnR

R
− ln Ir

I∗r
− 2 + R

R
+ Ir
I∗r

)

= : a105aG105a + a104G104 + a106G106 + a105bG105b + a108aG108a + a109G109 + a108bG108b

Where, a15 = a31 = σV ∗λ∗s, a18 = a71 = σV ∗λ∗r, a21 = θV ∗, a25 = a32 = S∗λ∗s, a28 = a72 =

S∗λ∗r,
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a310 = κR∗λ∗s, a35 = (S∗ + σV ∗ + κR∗)λ∗s, a38 = a73 = λ∗rH
∗
s , a43 = αε(1− p)H∗s ,

a48 = a74 = λ∗rL
∗
s, a54 = γηL∗s, a53 = α(1− ε)(1− p)H∗s , a63 = (φ+ µ)T ∗s , a710 = κλ∗rR

∗,

a75 = (1 − q)ρsI∗s , a87 = (1 − ν)δE∗, a97 = νδE∗, a105a = ρsI
∗
s , a104 = γ(1 − η)L∗s,

a106 = φT ∗s ,

a105b = κλ∗sR
∗, a108a = ρrI

∗
r , a109 = ϕT ∗r , a108b = κλ∗rR

∗ and all other aij = 0.

The corresponding digraph G(A) (figure 5.4) for A = [aij], i, j = 1, ..., 10, 5a, 5b, 8a, 8b, is

given below:

Figure 5.4: The digraph G(A) for the dynamical system (5.1)-(5.10)

Along the cycle of the associated weighted digraph G(A) of figure 5.4:

G35 +G53 = Is

I∗s
− Hs

H∗s
+ lnHs

H∗s
− ln Is

I∗s
) + (− Is

I∗s
+ ln Is

I∗s
− HS

H∗s
+ Hs

H∗s
) = 0,

G35 +G43 +G54 = ( Is

I∗s
− Hs

H∗s
+ lnHs

H∗s
− ln Is

I∗s
) + (−Ls

L∗s
+ lnLs

L∗s
− lnHs

H∗s
+ Hs

H∗s
) + (− Is

I∗s
+ ln Is

I∗s
−

lnLs

L∗s
+ Ls

L∗s
) = 0,

G78 +G87 = ( Ir

I∗r
− E

E∗
− ln Ir

I∗r
+ ln E

E∗
) + ( E

E∗
− Ir

I∗r
− ln E

E∗
+ ln Ir

I∗r
) = 0, G34 +G43 = 0 and

for the other cycles in figure 5.4, ΣGij ≤ 0 if V
V ∗

, S
S∗

, R
R∗
≤ 1, Hs

H∗s
≤ Is

I∗s
and E

E∗
≤ Ir

I∗r
.

By Proposition 1.3 of [109], there exists ci > 0, i = 1, . . . , 10 such that B = Σ10
i=1ciBi is a

Lyapunov function for equations (5.1)−(5.10). The relations between ci’s can be derived

from Theorems 3.3 and 3.4 of [109] such that:

a97 > 0, d+(7) = 1 implies c9a97 = Σ10
k=1c7a9k

⇒ c9a97 = c7a97 ⇒ c9 = c7
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a106 > 0, d+(6) = 1 implies c10a106 = Σ10
=1c6a10k

⇒c10a106 = c6(a105a + a104 + a106 + a105b + a108a + a109 + a108b)

⇒c10 = c6
(a105a + a104 + a106 + a105b + a108a + a109 + a108b)

a106

a87 > 0, d−(8) = 1 implies c8a87 = Σ10
k=1ckak8

⇒c8a87 = c1a18 + c2a28 + c3a38 + c4a48 + c7a78 + c10(a108a + a108b)

⇒c8 = c1a18 + c2a28 + c3a38 + c4a48 + c7a78 + c10(a108a + a108b)
a87

Therefore, B = c1B1 + c2B2 + c3B3 + c4B4 + c5B5 + c6B6 + c7B7 + c8B8 + c9B9 + c10B10

is a Lyapunov function for (5.1)−(5.10). Therefore, E3 is globally asymptotically stable

in the interior of Ω when Reff (DS) > 1 and Reff (MDR) > 1.

5.5 Conclusion

In this study we have presented and analyzed the two strain TB model with interven-

tions: vaccination of newly born babies, screening of latently infected and treatments of

infectious individuals for both strains of tuberculosis (drug sensitive and multi-drug re-

sistance tuberculosis). We found that Reff (DS) = cωs(σψµ+(θ+(1−ψ)µ))
(θ+µ)

(1−p)α(εγη+(1−ε)(γ+η))
(α+µ)(γ+µ)(ρs+µ+ds)

and Reff (MDR) = cωr(σψµ+(θ+(1−ψ)µ))
(θ+µ)

(1−ν)δ
(δ+µ)(ρr+µ+dr) the effective reproduction numbers

of drug sensitive and multi-drug resistance tuberculosis respectively. And, thus Reff =

maxReff (DS), Reff (MDR) is the effective reproduction number of the system (5.1)-

(5.10). We have discussed on the existence of disease free equilibrium point, endemic

equilibrium (drug-sensitive TB only endemic equilibrium, drug-resistance TB only en-

demic equilibrium and endemic equilibrium when both strains exist) points and presented

the conditions that the local and global stability of those equilibrium points.
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Chapter 6

Numerical Simulation and

Sensitivity Analysis for Analysis on

the Dynamics of Tuberculosis

Mathematical Model with

Interventions

Abstract

This chapter present the numerical simulation for the nonlinear dynamical system (4.1)−(4.8).

Using standard data collected from different sources we found the numerical value of the

effective reproduction number is Reff = 0.7 < 1 which shows that the tuberculosis disease

not spreads in the community. We have done also sensitivity analysis to identify the most

influential parameter that affects the effective reproduction number and we found rate of

vaccine waning θ is the most influential parameter to change the effective reproduction

number.
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6.1 Introduction

In this chapter, we perform some numerical experimentation on the tuberculosis model

(4.1)-(4.8) to verifying some of the analytical results. This is done by using a set of

parameter values whose sources are mainly from related literatures, WHO and Federal

Democratic Republic of Ethiopia Ministry of Health reports as well as estimation in

order to have more realistic simulation results. In section 6.2 numerical simulations of

the results are done by using data reported by WHO and related literature. In sections

6.3 and 6.4 the sensitivity analysis and discussion were done respectively to provided

an explanation of the results . Finally, in section 6.5 we gave conclusions based on our

finding of this work.

6.2 Numerical Simulations

The Table-6.1 below presents the values and their respective sources of the parameters

of the model (4.1)-(4.8).

Table 6.1: Parameter estimation for parametrs in the

dynamical system (4.1)-(4.8)

Descriptions Symbols Value Source

Recruitment of the population Λ 3845257 [102]

Proportions new born vaccinated ψ 0.9 [102]

Natural death rate µ 0.0077 [66]

The rate of inefficacy of vaccine individuals σ 0.2 [67, 102]

The rate of BCG vaccine waning θ 0.0667 Estimated

Probability of acquiring TB infections per contact with

one active TB

ω 0.5 [67]

Number of effective contacts susceptible or vaccinated

individuals makes with infectious individuals per year.

c 2 Estimated

The rate of progression of individuals from early la-

tently infected with TB.

α 0.03 [67]
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Death rate due to the TB disease d 0.00025 [102]

Proportion of Hr move to T p 0.2 Estimated

The portion of Lr enter in to I δ 0.1 Estimated

Progression rate from Lr γ 0.03 [67]

Proportion of individuals who do not get chance for

screened at Hr and will go to Lr class.

ε 0.5 Estimated

The recovery rate infectious individuals ρ 0.3 [67]

Proportion of infectious individuals who enters to R q 0.94 [102]

Rate of individuals move from T to R φ 2 Estimated

Rate of individuals move from IT to R ϕ 1.33 Estimated

Acquired immunity due to previous treatment. κ 0.99 Estimated

6.2.1 Numerical Simulation for the Effective Reproduction Num-

ber

The effective reproduction number Reff of the model system (4.1)-(4.8) is:

Reff = cω

(
σψµ+ (1− ψ)µ+ θ

µ+ θ

)
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ)

(µ+ α) (µ+ γ) (µ+ ρ+ d)

Thus, the numerical value of effective reproduction number, Reff = 0.70 < 1. Now we are

going to illustrate and discussed on the relation between effective reproduction number

and the parameters as follows:

Let us consider the parameter contact rate c as a variable and keeping all other parameters

constant and written the effective reproduction number as a function of c, Reff (c) =

0.510027891273821c
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Figure 6.1: Graph of the effective reproduction number Reff vrs the effective contact rate

, c

In the graph figure 6.1 the lines Reff (c) = 0.51c and Reff = 1 intersect at c = 1.96.

Thus, Reff < 1 when the contact rate, c < 1.96 and Reff > 1 when c > 1.96 implies the

TB disease spreads in the community when c > 1.96.

Consider the parameter probability of transmission ω as a variable and keeping all other

parameters constant, then the effective reproduction number can be written as a function

of ω: Reff (ω) = 2.04ω.

Figure 6.2: Graph of the effective reproduction number Reff vrs probability of acquiring

TB ω

In the figure 6.2 the lines Reff (ω) = 2.04ω and Reff = 1 intersect at ω = 0.49, then

Reff < 1 when ω < 0.49 and Reff > 1 when 0.49 < ω .

Consider the rate of progression of individuals from early latently infected with TB, α

as a variable and keeping all other parameters as constant, the effective reproduction

number can be written as a function of α: Reff (α) = 1.13α
α+0.02
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Figure 6.3: Graph of the effective reproduction number Reff vrs rate of progression from

Hr, α

In figure 6.3 above the curve Reff (α) = 1.13α
α+0.02 and the line Reff = 1 intersect at α = 0.14,

then Reff < 1 when α < 0.14 and Reff >1 when α > 0.14

Consider the progression rate from Lr, γ as a variable and keeping all other parameters as

constant, the effective reproduction number can be written as a function of γ: Reff (γ) =
0.01γ+0.0002
0.002γ+0.0005

Figure 6.4: Graph of the effective reproduction number Reff vrs progression rate from

Ls, γ

In figure 6.4 the curve R0 (γ) = 0.01γ+0.0002
0.002γ+0.0005 and the line Reff = 1 intersect at γ = 0.03,

then Reff < 1 when γ < 0.03 and Reff > 1 when γ > 0.03.

Consider the rate of inefficacy of vaccine individuals, σ as a variable and keeping all other

parameters as constant, the effective reproduction number can be written as a function

of σ: Reff (σ) = 0.19σ + 2.01
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Figure 6.5: Graph of the effective reproduction number Reff vrs infficacy rate of BCG

vaccinve σ

In figure 6.5 the curve Reff (σ) = 0.19σ+ 2.01 and the line Reff = 1 do not intersect and

Reff > 1 for every value of σ.

Consider the rate of BCG vaccine waning, θ as a variable and keeping all other param-

eters as constant, the effective reproduction number can be written as a function of θ:

Reff (θ) = 1.210.005+θ
0.02+θ

Figure 6.6: Graph of the effective reproduction number Reff vrs vaccine wanning rate θ

In figure 6.6 the curve Reff (θ) = 1.210.005+θ
0.02+θ and the line Reff = 1 intersect at θ = 0.06,

then Reff < 1 when θ < 0.06 and Reff > 1 when θ > 0.06

Consider the proportions new born vaccinated, ψ as a variable and keeping all other

parameters as constant, the effective reproduction number can be written as a function

of ψ: Reff (ψ) = −0.21ψ + 1.20718341374269
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Figure 6.7: Graph of the effective reproduction number Reff vrs proportion of vaccinated

newly born babies ψ

In figure 6.7 the curve Reff (ψ) = −0.21ψ + 1.21 and the line Reff = 1 intersect at

ψ = 0.99, then Reff < 1 when ψ > 0.99 and Reff > 1 when ψ < 0.99

Consider the proportion of Hr move to T , p as a variable and keeping all other param-

eters as constant, the effective reproduction number can be written as a function of p:

Reff (p) = (1− p)0.87

Figure 6.8: Graph of the effective reproduction number Reff vrs proportion of Hs move

to Ts, p

In figure 6.8 the curve Reff (p) = (1− p)0.87 and the line Reff = 1 have no intersection

in the first quadrant however Reff < 1 for all p ∈ [0, 1]

Take the proportion of individuals who do not get chance for screened at Hr and will go

to Lr class, ε as a variable and keeping all other parameters as constant, the effective

reproduction number can be written as a function of ε: Reff (ε) = −1.24ε+ 1.34.
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Figure 6.9: Graph of the effective reproduction number Reff vrs proportion of Hr will go

to Lr, ε

In figure 6.9 the lines Reff (ε) = −1.24ε + 1.32 and Reff = 1 intersect at ε = 0.26, then

Reff < 1 when ε > 0.26 and Reff > 1 when ε < 0.26.

Consider the portion of Lr enter in to I, δ as a variable and keeping all other parameters as

constant, the effective reproduction number can be written as a function of δ: Reff (δ) =

0.41δ + 0.66 ,

Figure 6.10: Graph of the effective reproduction number Reff vrs portion of Lr enter in

to I, δ

In figure 6.10 the lines Reff (δ) = 0.41δ + 0.66 and Reff = 1 intersect at δ = 0.83. Then

Reff < 1 when δ < 0.83 and Reff > 1 when δ > 0.83.

Consider the death rate due to the TB disease, d as a variable and keeping all other

parameters as constant, then the effective reproduction number can be written as a

function of d: R0 (d) = 2.23
d+0.09
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Figure 6.11: Graph of the effective reproduction number Reff vrs induced death rate, d

In figure 6.11 the curve R0 (d) = 2.23
d+0.09 and the line Reff = 1 intersect at d = 2.14, then

Reff < 1 when d > 2.14 and Reff > 1 when d < 2.14.

Consider the recovery rate infectious individuals, ρ as a variable and keeping all other

parameters as constant, then the effective reproduction number can be written as a

function of ρ: Reff (ρ) = 2.23
ρ+0.02

Figure 6.12: Graph of the effective reproduction number Reff vrs recovery rate of I, ρ

In figure 6.12 the curve Reff (ρ) = 2.23
ρ+0.02 and the line Reff = 1 intersect at ρ = 2.21,

then Reff < 1 when ρ > 2.21 and Reff > 1 when ρ < 2.21.
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6.3 Sensitivity Analysis

We perform sensitivity analyses on a mathematical model of TB transmission to deter-

mine the relative importance of model parameters to disease transmission and control.

We apply the normalized forward sensitivity index of Reff to a parameter is the ratio

of the relative change in the variable to the relative change in the parameter [66]. In

interpreting the sensitivity indices of Reff with respect to a parameter, we first note that

keeping all other factors fixed and determine the magnitude of the sensitivity indices.

The parameter with higher magnitude is/are more influential. The sign of the sensitivity

indices of Reff with respect to the parameters show the positive or negative impact of

the parameter onReff . That is if the sign of the sensitivity indices is positive then the

value of Reff increase whenever the value of the parameter increases and if the sign of

the sensitivity indices is negative then the value of Reff decrease whenever the value of

the parameter increase [66, 67].

As we have an explicit formula for Reff , we derive an analytical expression for the sensi-

tivity of Reff ,

Reff = cω

(
σψµ+ (1− ψ)µ+ θ

µ+ θ

)
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ)

(µ+ α) (µ+ γ) (µ+ ρ+ d)

to each of the parameters of the dynamical system (4.1)-(4.8) as, Π Reff
x = ∂Reff

∂x
× x

Reff

where x is the parameter of the dynamical system (4.1)-(4.8)which involves in Reff . We

evaluate the nonzero sensitivity indices ofReff with respect to the parameters as follows:

Sensitivity index of Reff with respect to the parameters c is given as:

Π Reff
c = ∂Reff

∂c
× c

Reff

= 1

Sensitivity index of Reff with respect to the parameters ω is given as:

Π Reff
ω = ∂Reff

∂ω
× ω

Reff

= 1

Sensitivity index of Reff with respect to the proportion of vaccinated new born, ψ is

given as:

Π Reff

ψ = ∂Reff

∂ψ
× ψ

Reff

= (σ − 1)ψµ
σψµ+ (1− ψ)µ+ θ
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Sensitivity index of Reff with respect to the rate of inefficacy of BCG vaccine σ is given

as:

Π Reff
σ = ∂ Reff

∂σ
× σ

Reff

= σψµ

σψµ+ (1− ψ)µ+ θ

Sensitivity index of Reff with respect to the rate of BCG vaccine waning θ is given as:

Π Reff

θ = ∂R0

∂θ
× θ

Reff

= (1− σ)ψµ
(µ+ θ) (σψµ+ (1− ψ)µ+ θ)

Sensitivity index of Reff with respect to the rate of individuals leave from Hr, α is given

as:

Π Reff
α = ∂Reff

∂α
× α

Reff

= µ

(µ+ α)

Sensitivity index of Reff with respect to the rate of individuals leave from Lr class γ is

given as:

Π Reff
γ = ∂ Reff

∂γ
× γ

Reff

= γ [αε (1− p) δ + α (1− ε) (1− p)]
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ) −

γ

(µ+ γ)

Sensitivity index of Reff with respect to the proportion of Hr, who go for treatment, p

is given as:

Π Reff
p = ∂Reff

∂p × p

Reff

= − p [αεδγ + α (1− ε) (µ+ γ)]
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ)

Sensitivity index of Reff with respect to the Proportion of individuals who do not get

chance for screened at Hr who will go to Lr class, ε is given as:

ΠReff
ε = ∂Reff

∂ε
× ε

Reff

= α (1− p) ε [δγ − (µ+ γ)]
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ)

Sensitivity index of Reff with respect to the rate at which individuals leave infectious

class I, ρ is given as:

Π Reff
ρ = ∂Reff

∂ρ
× ρ

Reff

= − ρ

(µ+ ρ+ d)

Sensitivity index of Reff with respect to the portion of Lr enter in to I, δ

Π Reff

δ = ∂Reff

∂δ
× δ

Reff

= δαε (1− p) γ
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ)

Sensitivity index of Reff with respect to the induced death rate, d

Π Reff

d = ∂Reff

∂d
× d

Reff

= − d

(µ+ ρ+ d)
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Sensitivity index of Reff with respect to the natural death rate, µ

Π Reff
µ = ∂Reff

∂µ
× µ

Reff

= µ (1 + (σ − 1)ψ)
(1 + (σ − 1)ψ)µ+ θ

+ µ (1− ε)
(1− ε)µ+ εδγ + (1− ε) γ −

µ

µ+ θ
− µ

µ+ γ
− µ

µ+ d+ ρ

Using the data in table 6.1 the resulting sensitivity indices of Reff to the parameters are

shown in table 6.2 with the order from most sensitive to the least:

Table 6.2: The numerical values of the sensitivity indices of Reff with respect to each of

the parameter which involve in Reff

Parameters The sensitivity index of Reff to the parameters

θ +2.16

γ +1.26

c +1

ω +1

α +0.38

δ +0.0585

σ +0.046

d -0.00075

µ -0.134

ψ -0.184

ε -0.883

ρ -0.942

p -1.25

6.4 Discussion

In this section we discussed on the numerical results of dynamics of tuberculosis dis-

ease (4.1)-(4.8). And we have been evaluate the effect of each parameter on effective

reproduction number,

Reff = cω

(
σψµ+ (1− ψ)µ+ θ

µ+ θ

)
αε (1− p) δγ + α (1− ε) (1− p) (µ+ γ)

(µ+ α) (µ+ γ) (µ+ ρ+ d)
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. Consequently, Figure 6.1 shows that if the contact rate, c < 1.96 then the effective

reproduction number,Reff < 1 and then the disease is not spread in the community if

c > 1.96 then Reff > 1 implies the TB disease spreads in the community when c > 1.96.

Figure 6.2 shows that the effective reproduction number,Reff < 1 when the probability

of acquiring TB infections per contact with one active TB, ω < 0.49 and Reff > 1

when 0.49 < ω < 1 . Implies that the TB disease spreads in the community when

0.49 < ω < 1 and not spread in the community if ω < 0.49 From figure 6.3 we observe

that the effective reproduction number, Reff < 1 if the rate of progression of individuals

from early latently infected with TB, α < 0.0.14 and Reff > 1 if α > 0.14. Thus

disease spreads in the community when α > 0.14 and not spread in the community if

α < 0.14. Figure 6.4 shows that the TB disease do not spread in the society when the

Progression rate from long latently infected class, γ < 0.03 and spread in the society

when γ > 0.03. From figure 6.5 and 6.10 we can notice that Reff > 1 for all values of the

rate of inefficacy of vaccine individuals, σ and the portion of long latent infected develop

active TB, δ respectively. Therefore the disease spread in the society for all value of σ

and δ. Figure 6.6 shows that the TB disease spread in the society if the rate of BCG

vaccine waning, θ > 0.06 and not spread in the society if θ < 0.06. In figure 6.6, Reff < 1

if θ > 0.99 and Reff > 1 if θ < 0.99 implies that the disease do not spread in the society

when θ > 0.99 and disease spread in the society when θ < 0.99. Figure 6.8 shows that

Reff < 1 for all values of the proportion of screened early infected, p ∈ [0, 1] and then

the disease spread in the community for all values of p. Figure 6.9 shows that the disease

do not spread in the society when the proportion of individuals who do not get chance

for screened at early latent stage ε > 0.26 and the disease spread in the society when

ε < 0.26. Through figure 6.11 and figure 6.12 illustrates that the disease do not spread

in the society when the death rate due to the TB disease, d > 2.14 and the recovery rate

infectious individuals, ρ > 2.21 respectively and spread in the society when d < 2.14 and

ρ < 2.21 respectively.

The parameters such as number of effective contacts of susceptible or vaccinated individ-

uals makes with infectious individuals per year c, probability of TB disease transmission

from infectious person to another person ω, the rate of inefficacy of BCG vaccine σ, the

rate of BCG vaccine waning θ, the rate of individuals leave from early latently infected

class α, the rate of individuals leave from long latently infected class have positive con-
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tributions for the transmission of TB, implies that, when those parameters are increased

keeping other parameters constant they increase the value of the effective reproduction

number, Reff . While the parameters such as the proportion of vaccinated new born

individuals ψ, the proportion of early latently infected individuals who go for treatment

p, the rate at which individuals leave infectious class will help to decrease the value of

the effective reproduction number, Reff as they increase. The most sensitive parameter

in the spread and control of tuberculosis disease is the waning rate of BCG vaccine, θ,

followed by the progression rate from long latently infected tuberculosis to active TB, γ

and the proportion p of early stage latently infected individuals who have got the chance

for screened and treatment (table 6.2).

6.5 Conclusion

This chapter presented the numerical simulation for the dynamical system (4.1)−(4.8).

Using standard data collected from different sources we found the numerical value of the

effective reproduction number is Reff = 0.7 which shows that the tuberculosis disease

not spreads in the community. We have done the numerical simulation of the dynamical

system. The waning rate of Bacilli Calmette-Guérin (BCG) vaccine, θ, followed by the

progression rate from long latently infected to active tuberculosis, γ and the proportion p

of early stage latently infected individuals who go for treatment are the most influential

parameters to change the effective reproduction number of the model (4.1)-(4.8). The re-

sult shows that vaccination alone cannot eliminate tuberculosis disease from a population,

but can slow the rate of transmission from long stage latently infected; and increasing

the portion screened and treating of early stage latently infected.
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Chapter 7

Parameter Estimation, Numerical

Simulation and Sensitivity Analysis

for Spread and Control of Drug

Sensitive and Multi-Drug Resistance

Tuberculosis in Ethiopia

Abstract

In this chapter we presented the numerical simulation for the nonlinear dynamical system

of two-strain Tuberculosis epidemic in Ethiopia (5.1)−(5.10). Using real data collected

from different health centers from Ethiopia we found that the numerical value of the

effective reproduction number of the drug sensitive tuberculosis is Reff (DS) = 1.03 and

the effective reproduction number of the drug resistance tuberculosis is Reff (MDR) =

4.78.These numerical values indicate that both strains of tuberculosis persist in the com-

munity with interventions. Numerical simulation is also done to illustrate the influence

of different parameters on the effective reproduction number. Using sensitive analysis

we identify the most influential parameter to change the behavior of the solution of the

considered dynamical system is the number of effective contacts of susceptible or vacci-
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nated individuals make with an infectious individual c, with the sensitivity index of both

Reff (DS) and Reff (MDR) are equal to 1.

7.1 Introduction

We performed some numerical experimentation on the tuberculosis model (5.1)−(5.10).

This is done by using a set of parameter values whose sources are mainly from Federal

Democratic Republic of Ethiopia Ministry of Health (EMH), Ethiopia Demographics Pro-

file (EDP), world health organization (WHO) reports and other related literatures as well

as estimation in order to have more realistic simulation results. In section 7.2 parameters

are estimated by using data reported by the Ministry of Health of Ethiopia. In section

7.3 numerical simulations are done. In section 7.4 sensitivity analysis of investigated.

Finally,in sections 7.5 and 7.6 we discussed and provide an explanation on the finding of

this work.

7.2 Parameter Estimation

We take initial condition from the data of Ministry of Health of Ethiopia [43]: V (0) =

9436405, Is(0) = 42139,Ts(0) = 83546, E(0) = 8098, Ir(0) = 774, Tr(0) = 528 and

R(0) = 3597. We assumed that more than half of the population (62%) belongs to

susceptible class S(0)=62355690 and that a big percentage about 33% is infected with TB

in latent stage that is Hs(0) = 2×(417729 per year) = 835, 458 and Ls(0) = 32, 164, 542,.

This is justified from the fact that “about one third of the world’s population has latent

TB”, as it is indicated from the webpage of the World Health Organization (WHO, 2017).

In the Ethiopian demography profile the birth rate of Ethiopian population is 36.5 per

1000 population and the total population is 105,350,020. Therefore we can calculate the

recruitment of the population as:

Λ = birth rate× total population = (36.5× 105, 350, 020)
1000 = 3845275

In Ethiopia the BCG vaccine programs has implemented and so that according to the
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Ethiopian Ministry of Health in a year there are 1887281 newly born babies have taken

BCG vaccine.

Therefore, we can estimate the proportion of newly born BCG vaccinated babies in

Ethiopia as:

ψ = number of newly born vaccinated babies
Total number of newly born babies = 1887281/3845275 = 0.49

According to Ethiopia demography profile, in Ethiopia there are 7.7 deaths per 1000

population. Hence the natural death rate of the population in Ethiopia is estimated as:

µ = number of death
number of total population = 7.7/1000 = 0.0077

As the world health organization report the maximum efficacy of BCG vaccine is 80%,

this implies that there is a 20% inefficacy rate of the BCG vaccine. That is the rate of

inefficacy of BCG vaccine is estimated as:

σ = 1− proportion of maximum efficacy of BCG vaccine = 1− 0.8 = 0.2

From the world health organization report the BCG vaccine efficacy reduces in time and

loses completely its efficacy after 15 years. Therefore we can calculate the rate of BCG

vaccine waning rate per year as:

θ = 1/(mean life time of BCG vaccine) = 1
15years = 0.067per year

Probability of acquiring TB infections per contact with a drug sensitive strain infectious

individual:

ωs = number of newly infected individuals from a DS-TB infectious
total number of people who contact a DS-TB infectious = 0.2

Probability of acquiring MDR-TB infections per contact with an infectious individual:

ωr = number of newly infected from an MDR-TB infectious
total number of people who contact with an MDR-TB infectious = 0.3

Number of effective contacts susceptible or vaccinated individuals makes with infectious

individuals per year: c= the average number of susceptible or vaccinated individuals

makes contacts with an infectious individuals per year = 11

Death rate due to the drug sensitive TB disease:

ds = the number of people die due to DS-TB disease
total number of petient with DS-TB disease = 0.00025
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Death rate due to the multi-drug resistance TB disease:

dr = the number of people die due to MDR-TB disease
total number of petient with MDR-TB disease = 0.105

From the real data of Ethiopia Ministry of health on tuberculosis we can also estimate

the following parameters:

Rate of individuals move from Ts to R:

φ = 1
mean infection period early latently infected DS-TB = 0.94

Rate of individuals move from Tr to R:

ϕ = 1
mean infection period of latently infected MDR-TB = 0.88

Rate of recovery of active drug sensitive tuberculosis:

ρs = 1
mean infectous period of active DS-TB = 0.83

Rate of recovery of active multi-drug resistance tuberculosis:

ρr = 1
mean infectous period of active MDR-TB = 0.498

Progression rate from early latency drug sensitive tuberculosis:

α = 1
average early latent period of DS-TB = 1/(2year) = 0.5per year

Progression rate from latency multi-drug resistant tuberculosis:

δ = 1
average life time latently infected MDR-TB = 0.55per year

Proportion of individuals who do not get chance for screened at Hs and will go to Ls

class:

ε = number of individuals who move from Hs to Ls
total number individuals who do not get chance for screened at Hs

= 0.9

Proportion of latently infected DS-TB at early stage for treatment:

p = number of screend at Hs and move to Ts
total number individuals at Hs

= 83546
417729 = 0.2

The proportion of latently infected with MDR-TB who got a chance of screen and treat-

ment:

ν = number of individuals who screened latent MDR-TB
total number latently infected with MDR-TB = 0.065
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The portion of Ls enter in to Is:

η = number of individuals Lswho develope active DS-TB
total number long latently infected with DS-TB = 0.5

Proportion of infectious individuals with DS-TB who enters to recovered class.

q = number of cured individuals active DS-TB
total number active DS-TB = 0.18

Progression rate from Long latently infected with drug sensitive TB.

γ = 1
mean infected period for long latent DS-TB = 0.1per year

Acquired immunity due to previous treatment:

κ = number of reinfected cases
total number of recovered individuals = 0.06

Table 7.1: Parameter estimation for parametrs in the

dynamical system (5.1)-(5.10)

Descriptions Symbols Value Source

Recruitment of the population Λ 3845257 [37]

Proportions new born vaccinated ψ 0.49 [37, 43]

Natural death rate µ 0.0077 [37]

The rate of inefficacy of BCG vaccine individuals σ 0.2 [103]

The rate of vaccine BCG waning θ 0.0667 [103]

Probability of acquiring TB infections per contact with one

active DS-TB

ωs 0.2 [13]

Probability of acquiring TB infections per contact with one

active MDR-TB

ωr 0.3 [64]

Number of effective contacts susceptible or vaccinated indi-

viduals makes with infectious individuals per year.

c 11 [108]

The rate of progression of individuals from early latently

infected with DS-TB.

α 0.5 [103]

Death rate due to the DS-TB strain disease ds 0.00025 [1, 108]

Death rate due to the MDR-TB strain disease dr 0.105 [1, 94]
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Proportion of Hs move to Ts p 0.2 [43]

The portion of Ls enter in to Is η 0.5 [103]

Progression rate from Ls γ 0.1 [103]

Progression rate from latency MDR-TB. δ 0.55 [43]

Proportion of individuals who do not get chance for screened

at Hs and will go to Ls class.

ε 0.9 [103]

The recovery rate infectious individuals DS-TB strain, ρs 0.83 [43]

The recovery rate infectious individuals MDR-TB strain. ρr 0.498 [1, 94]

Proportion of infectious individuals with DS-TB who enters

to R.

q 0.18 [43]

The portion of E who screened for treatment ν 0.065 [43]

Rate of individuals move from Ts to R φ 0.94 [43]

Rate of individuals move from Tr to R ϕ 0.88 [43]

Acquired immunity due to previous treatment. κ 0.06 [30]

7.3 Numerical Simulation for the Dynamics

The numerical value ofReff (Ds) = 1.03, Reff (MDR) = 4.78 and thenReff = max{1.03, 4.78} =

4.78. Consequently, both strain of tuberculosis spread in the community. Figures 7.1 and

7.2 show the behavior of solution curves of the infected variables in the period of 10 years.

Figure 7.1: Variations of latent DS-TB, DS-TB infectious
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Figure 7.2: Variations of latent MDR-TB and MDR-TB infectious

We discussed on the relation between effective reproduction number and the parame-

ters involved in it. Now we consider the parameters that involve in both Reff (DS)

and Reff (MDR) and discuss on their impact on the transmission of DS-TB and/or

MDR-TB strains. Here five parameters are involve in common for both effective re-

production numbers Reff (DS) and Reff (MDR). Let us consider the parameter, the

number of effective contacts c as a variable and keeping all other parameters constant

and written the effective reproduction numbers as a function of c, Reff (DS)(c) = 0.09c

and Reff (MDR)(c) = 0.43c. Consider the rate of inefficacy of vaccine individuals

σ as a variable and keeping all other parameters as constant, the effective reproduc-

tion numbers can be written as a function of σ: Reff (DS)(σ) = 0.06σ + 1.02 and

Reff (MDR)(σ) = 0.25σ + 4.74.
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Figure 7.3: Graph of the effective reproduction numbers Reff (DS) and Reff (MDR) vrs

effective contact rate , c

Figure 7.4: Graph of the effective reproduction numbers Reff (DS) and Reff (MDR) vrs

infficacy rate of BCG vaccinve, σ

In the figure 7.3 the lines Reff (DS)(c) = 0.09c and Reff (MDR)(c) = 0.43c intersect with

Reff (MDR) = Reff (DS) = 1 intersect at the values of c = 10.7 and c = 2.3 respectively.

Thus, Reff (DS) < 1 when the contact rate, c < 10.7 and Reff (DS) > 1 when c >

10.7. For the value of 2.3 < c < 10.7 only MDR-TB spread in the society. Whereas

Reff (MDR) < 1 when the number of effective contacts, c < 2.3 and Reff (MDR) > 1

when c > 2.3. This implies the TB disease spreads in the community when c > 2.3 and

eliminate if c < 2.3. Figure 7.4 shows that both Reff(DS)(σ) and Reff (MDR)(σ) are
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above Reff (DS) = Reff (MDR) = 1 , thus for every values of σ the both strains of the

TB disease spread in the society. Of course the transmission of MDR-TB is higher than

DS-TB.

Consider the rate of vaccine waning θ as a variable and keeping all other parame-

ters as constant, the effective reproduction numbers can be written as a function of

θ: Reff (DS)(θ) = (0.005+1.07θ)
(θ+0.0077) and Reff (MDR)(θ) = 4.9824(θ+0.0047)

(θ+0.0077) . Consider the propor-

tions new born vaccinated ψ as a variable and keeping all other parameters as constant,

the reproduction number can be written as a function of ψ: Reff (DS)(ψ) = 1.07− 0.09ψ

and Reff (MDR)(ψ) = 4.99− 0.42ψ.

Figure 7.5: Graph of the effective reproduction numbers Reff (DS) and Reff (MDR) vrs

vaccine wanning rate, θ
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Figure 7.6: Graph of the effective reproduction numbers Reff (DS) and Reff (MDR) vrs

proportion of vaccinated newly born babies, ψ

In figure 7.5 the curve: Reff (DS)(θ) = (0.005+1.07θ)
(θ+0.0077) and the line Reff (DS) = 1 intersect

at θ = 0.038, then Reff (DS) < 1 when θ < 0.04 and Reff (DS) > 1 when θ > 0.04. But

the curve θ: Reff (MDR)(θ) = (0.005+1.07θ)
(θ+0.0077) is above Reff (MDR) = 1. This implies the

MDR-TB spreads in the community for every value of θ. And for the value of θ < 0.04 the

DS-TB does not spread in the society. In figure 7.6 the curve Reff (DS)(ψ) and the line

Reff (DS) = 1 intersect at ψ = 0.8, then Reff (DS) < 1 when ψ > 0.8 and Reff (DS) > 1

when ψ < 0.8. And Reff (MDR) > 1 for all values of ψ. This shows that the MDR-TB

exist always, but DS-TB spreads for ψ < 0.8.

Taking the natural death rate µ as a variable and keeping all other parameters as constant,

the effective reproduction numbers can be written as a function of µ:

Reff (DS)(µ) = (0.12µ+0.01)
(0.0667+µ)(0.5+µ)(0.1+µ)(µ+0.83) and Reff (MDR)(µ) = 3.04 (0.61µ+0.0667)

(0.0667+µ)(0.60+µ)
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Figure 7.7: Graph of the effective reproduction numbers Reff (DS) and Reff (MDR) vrs

natural death rate, µ

In figure 7.7 the curve Reff (DS) (0.12µ+0.01)
(0.0667+µ)(0.5+µ)(0.1+µ)(µ+0.83) and the line Reff (DS)(µ) = 1

intersect at µ = 0.01, then Reff (DS) <1 when µ > 0.01 and Reff (DS) > 1 when

µ < 0.01. And Reff (MDR) > 1 for all values of µ < 1.3. This shows that the MDR-TB

exists, but not DS-TB spreads for 0.01 < µ < 1.3.

Now we consider the parameters that involve in Reff (DS) only and discuss on their

impact on the transmission of DS-TB.

Consider the Proportion of latently infected drug sensitive TB at early stage for treatment

p as a variable and keeping all other parameters as constant, the effective reproduction

number can be written as a function of p: Reff (DS)(p) = 1.29(1 − p). Again, consider

the recovery rate infectious individuals DS-TB strain disease ρs as a variable and keeping

all other parameters as constant, then the effective reproduction number can be written

as a function of ρs: Reff (DS)(ρs) = 0.85
(ρs+0.01)

Figure 7.8: Graph of the effective reproduction number Reff (DS) vrs proportion of Hs

move to Ts, p
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Figure 7.9: Graph of the effective reproduction number Reff (DS) vrs recovery rate of Is,

ρs

In figure 7.8 the curve Reff (DS)(p) = 1.29(1− p) and the line Reff (DS) = 1 intersect at

p = 0.22, Reff (DS) < 1 when p > 0.22 and Reff (DS) > 1 when p < 0.22. In figure 7.9

the curve Reff (DS)(ρs) = 0.85
(ρs+0.01) and the line Reff (DS) = 1 intersect at ρs = 0.85,

Reff (DS) < 1 when ρs > 0.85 and Reff (DS) > 1 when ρs < 0.85.

Taking the portion of Ls enter in to Is, η as a variable and keeping all other parame-

ters as constant, the effective reproduction number can be written as a function of η:

Reff (DS)(η) = (0.005+1.0712η)
(η+0.0077)

Figure 7.10: Graph of the effective reproduction number Reff (DS) vrs portion of Ls
enter in to Is, η

In figure 7.10 the curve Reff (DS)(η) = (0.005+1.0712η)
(η+0.0077) and the line Reff = 1 intersect at

168



η = 0.48, Reff (DS) < 1 when η < 0.48 and Reff > 1 when η > 0.48.

The effective reproduction number Reff (DS) can also be given as a function of the

induced death rate due to the DS-TB disease ds: Reff (DS)(ds) = 0.85
(ds+0.84)

Figure 7.11: Graph of the effective reproduction number Reff (DS) vrs induced death

rate of Is, ds

In figure 7.11 the curve Reff (DS)(ds) = 0.85
(ds+0.84) and the line Reff (DS) = 1 intersect at

ds = 0.02, Reff (DS) < 1 when ds > 0.023 and Reff (DS) > 1 when ds < 0.02.

The effective reproduction number Reff (MDR) can also be given as a function of the

recovery rate infectious MDR-TB individuals ρr: keeping all other parameters as constant,

Reff (MDR)(ρr) = 2.92
ρr+0.11 . And the effective reproduction number Reff (MDR) can also

be given as a function of the portion of E enter in to Ir, ν: keeping all other parameters

as constant, Reff (MDR) = 5.12(1− ν).

Figure 7.12: Graph of the effective reproduction number Reff (MDR) vrs recovery rate

of Ir, ρr
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Figure 7.13: Graph of the effective reproduction number Reff (MDR) vrs portion of E

who screened, ν

In figure 7.12 the curve Reff (MDR)(ρr) = 2.92
ρr+0.11 and the line Reff (MDR) = 1 intersect

at ρr = 2.8, Reff (MDR) < 1 when ρr > 2.8 and Reff (MDR) > 1 when ρr < 2.8.

In figure 7.13 the curve Reff(MDR)(ν) = 5.12(1 − µ) and the line Reff (MDR) = 1

intersect at ν = 0.8, Reff (MDR) < 1 when ν > 0.8 and Reff (MDR) > 1 when ν < 0.8.

The effective reproduction number Reff (MDR) can also be given as a function of the

death rate due to the MDR-TB disease dr: keeping all other parameters as constant,

Reff (MDR)(dr) = 2.92
(0.51+dr) .

Figure 7.14: Graph of the reproduction number Reff (MDR) vrs induced death rate Ir,

dr

In figure 7.14 the curve Reff (MDR)(dr) = 2.92
(0.51+dr) and the lineReff (MDR) = 1 intersect

at dr = 2.4, Reff (MDR) < 1 when dr > 2.4 and Reff (MDR) > 1 when dr < 2.4.

170



7.4 Sensitivity Analysis

We apply the normalized forward sensitivity index of the effective reproduction number

Reff to a parameter [66] to analysis the impact of parameters in the spread and control

of TB. That is the ratio of the relative change in the effective reproduction numbers to

the relative change in the parameter .

If Reff (DS) > Reff (MDR), then we have:

Reff = max{Reff (DS), Reff (MDR)} = Reff (DS) = cωs
(θ+(1−ψ)µ)+µσψ

(µ+θ)
(αε(1−p)γη+α(γ+µ)(1−ε)(1−p))

(α+µ)(γ+µ)(ρs+µ+d(s))

Therefore, we evaluate the nonzero sensitivity indices of Reff (DS) with respect to the

parameters as follows:

Sensitivity index of Reff (DS) with respect to the parameters c is given as:

ΠReff (DS)
c = ∂Reff (DS)

∂c
× c

Reff (DS)

= ωs

(
(θ + (1− ψ)µ) + µσψ

(µ+ θ)

)
αε(1−p)γη

(α+µ)×(γ+µ) ×(ρs+µ+ds)+
α(γ+µ)(1−ε)(1−p)

(α+µ)×(γ+µ) ×(ρs+µ+ds)

× c

cωs
(

(θ+(1−ψ)µ)Λ+µσψΛ
µ(µ+θ)

)
(αε(1−p)γη+α(γ+µ)(1−ε)(1−p))

(α+µ)×(γ+µ) ×(ρs+µ+ds)

 = 1

Sensitivity index of Reff (DS) with respect to the parameters ωs is:

ΠReff (DS)
ωs

=∂R0

∂ωs
× ωs
R0

=c
(

(θ + (1− ψ)µ) + µσψ

(µ+ θ)

)
αε(1−p)γη

(α+µ)×(γ+µ) ×(ρs+µ+ds)+
α(γ+µ)(1−ε)(1−p)

(α+µ)×(γ+µ) ×(ρs+µ+ds)


×

 ωs

cωs
(

(θ+(1−ψ)µ)+µσψ
(µ+θ)

)
(αε(1−p)γη+α(γ+µ)(1−ε)(1−p))

(α+µ)×(γ+µ) ×(ρs+µ+ds)

 = 1

Sensitivity index of Reff (DS) with respect to the proportion of vaccinated new born, ψ

is given as:

ΠReff (DS)
ψ = (µψ(σ − 1))

(θ + µ+ µψ(σ − 1)) < 0 Since σ − 1 < 0 and θ + µ+ µψ(σ − 1) > 0

Hence, ψ has negative impact on the transmission of drug sensitive tuberculosis. There-

fore, increasing ψ decreases Reff (DS).
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Sensitivity index of Reff (DS) with respect to the rate of inefficacy of BCG vaccine σ is

given as:

ΠReff (DS)
σ = ∂Reff (DS)

∂σ
× σ

Reff (DS) = ψσµ

θ + µ+ ψµ(σ − 1) > 0

positive effect on the transmission of drug sensitive tuberculosis. Therefore, if σ increas-

ing, then Reff (DS) increases.

Sensitivity index of Reff (DS) with respect to the rate of BCG vaccine waning θ is given

as:

ΠReff (DS)
θ = ∂Reff (DS)

∂θ
× θ

Reff (DS) = ψµθ (1− σ)
(µ+ θ) [θ + µ+ µψ (σ − 1)] > 0

implies θ has positive contribution for the transmission of drug sensitive tuberculosis.

Therefore, increasing θ increases the effective reproduction number Reff (DS).

Sensitivity index of Reff (DS) with respect to the rate of individuals leave from Hs, α is

given as:

ΠReff (DS)
α = ∂Reff (DS)

∂α
× α

Reff (DS) = µ

α + µ
> 0

implies α has positive contribution for the transmission of drug sensitive tuberculosis.

Therefore, increasing α forces to increase the effective reproduction number Reff (DS).

Sensitivity index of Reff (DS) with respect to the rate of individuals leave from Ls class

γ is given as:

ΠReff (DS)
γ = ∂Reff (DS)

∂γ
× γ

Reff (DS) =
{

(εη + (1− ε)) γ
(εγη + (γ + µ) (1− ε)) −

γ

(γ + µ)

}
> 0

This implies that γ has positive effect on the transmission of tuberculosis. Thus, increas-

ing γ leads to increase Reff (DS).

Sensitivity index of Reff (DS) with respect to the proportion of Hs, who go for treatment,

p is given as:

ΠReff (DS)
p = ∂Reff (DS)

∂p × p

Reff (DS) = − p

1− p < 0

implies p has negative contribution for the transmission of tuberculosis. Hence, increasing

p causes to decrease the effective reproduction number Reff (DS).
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Sensitivity index of Reff (DS) with respect to the proportion of individuals who do not

get chance for screened at Hs who will go to Ls class, ε is given as:

ΠReff (DS)
ε = ∂Reff (DS)

∂ε
× ε

Reff (DS) = ε(1− p)(γη − (γ + µ))
(ε(1− p)γη + (γ + µ)(1− ε)(1− p)) < 0

implies that ε has negative contribution for the transmission of tuberculosis. Thus, in-

creasing ε leads to decrease Reff (DS).

Sensitivity index of Reff (DS) with respect to the rate at which individuals leave infectious

class Is, ρs is given as:

ΠReff (DS)
ρs

= ∂Reff (DS)
∂ρs

× ρs
Reff (DS) = − ρs

ρs + µ+ ds
< 0

this implies ρs has negative contribution for the transmission of tuberculosis. Thus in-

creasing ρs forces to decrease Reff (DS).

Sensitivity index of Reff (DS) with respect to the portion of Ls enter in to Is, η is given

as:

ΠReff (DS)
η = ∂Reff (DS)

∂η
× η

Reff (Ds)
= ηγε

(εγη + (γ + µ)(1− ε)) > 0

implies η has positive contribution for the transmission of tuberculosis. Then increasing

η leads to increase Reff (DS).

Sensitivity index of Reff (DS) with respect to the induced death rate of infectious indi-

viduals by drug sensitive TB, ds is given as:

ΠR0
ds

= ∂R0

∂ds
× ds
R0

= − ds
(ρs + µ+ ds)

< 0

his implies ds has negative contribution for the transmission of tuberculosis. Thus, in-

creasing ds forces to decrease Reff (DS).

For the parameters of which the sensitivity index of Reff (DS) has positive sign the effec-

tive reproduction number increase as those parameters increase and vise verse, while for

those parameters of which sensitivity index of Reff (DS) has negative sign then the effec-

tive reproduction number increase as the parameters decrease and vise versa. Thus we

have shown that the parameters like number of effective contacts of susceptible individu-

als makes with infectious individuals per year, probability of drug susceptible tuberculosis
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transmission from infectious person to another person, the rate of inefficacy of BCG vac-

cine, the rate of BCG vaccine waning, the rate of individuals leave from early latently

infected class with drug susceptible tuberculosis, the rate of individuals leave from long

latently infected class with drug susceptible tuberculosis have positive contributions for

the transmission of TB, implies that, when those parameters are increased keeping other

parameters constant they increase the value of Reff (DS). Thus, they increase the en-

demicity of the drug susceptible tuberculosis as they have positive indices. While the

parameters:- the proportion of vaccinated new born individuals, the proportion of early

latently infected of drug susceptible tuberculosis individuals who go for treatment, the

rate at which individuals leave infectious class of drug sensitive tuberculosis will help to

control the spread of the disease that is, when they are increased keeping all the other

parameters constant decrease the value of Reff (DS).

If Reff (MDR) > Reff (DS), then we have Reff = max{Reff (DS), Reff (MDR)} =

Reff (MDR) = (σψµ+(θ+(1−ψ)µ)
(µ+θ)

cωr(1−ν)δ
(δ+µ)(ρr+µ+dr) . Therefore, we evaluated the nonzero sensi-

tivity indices of Reff (MDR) with respect to the parameters as follows:

Sensitivity index of Reff (MDR) with respect to the parameters c is given as:

ΠReff (MDR)
c = ∂Reff (MDR)

∂c
× c

Reff (MDR) = 1

Sensitivity index of Reff (MDR) with respect to the parameters ωr is:

ΠReff (MDR)
ωr

= ∂Reff (MDR)
∂ωr

× ωr
Reff (MDR) = 1

Sensitivity index of Reff (MDR) with respect to the proportion of vaccinated new born,

ψ is given as:

ΠReff (MDR)
ψ = ∂Reff (MDR)

∂ψ
× ψ

Reff (MDR) = µψ(σ − 1)
θ + (1− ψ)µ+ µσψ

< 0

Hence, ψ has negative impact on the transmission of drug resistance tuberculosis. There-

fore, increasing ψ decreases Reff (MDR).

Sensitivity index of Reff (MDR) with respect to the rate of inefficacy of BCG vaccine σ

is given as:

ΠReff (MDR)
σ = ∂Reff (MDR)

∂σ
× σ

Reff (MDR) = µσψ

θ + (1− ψ)µ+ σψ
> 0
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implies σ has positive effect on the transmission of drug resistant tuberculosis. Therefore,

if σ increasing, then Reff (MDR) increases.

Sensitivity index of Reff (MDR) with respect to the rate of BCG vaccine waning θ is

given as:

ΠReff (MDR)
θ = ∂Reff (MDR)

∂θ
× θ

Reff (MDR) = θψµ

(θ + µ)(θ + (1− ψ)µ) + µσψ
> 0

mplies θ has positive contribution for the transmission of multi-drug resistance tubercu-

losis. Therefore, increasing θ increases Reff (MDR).

Sensitivity index of Reff (MDR) with respect to the rate of progression of individuals

from latency multi-drug resistant tuberculosis δ , is given as:

ΠReff (MDR)
δ = ∂Reff (MDR)

∂δ
× δ

Reff (MDR) = µ

(δ + µ) > 0

implies δ has positive contribution for the transmission of multi-drug resistance tubercu-

losis. Therefore, increasing δ increases Reff (MDR).

Sensitivity index of Reff (MDR) with respect to the rate of portion of E enter in to Ir,

ν is given as:

ΠReff (MDR)
ν = ∂Reff (MDR)

∂ν
× ν

Reff (MDR) = − ν

(1− ν) < 0

implies ν has negative contribution for the transmission of multi-drug resistance tuber-

culosis. Therefore, increasing ν decreases Reff (MDR).

Sensitivity index of Reff (MDR) with respect to the rate of recovery rate infectious indi-

viduals MDR strain ρr is given as:

ΠReff (MDR)
ρr

= ∂Reff (MDR)
∂ρr

× ρr
Reff (MDR) = − ρr

ρr + µ+ dr
< 0

implies ρr has negative contribution for the transmission of multi-drug resistance tuber-

culosis. Therefore, increasing ρr decreases Reff (MDR).

Sensitivity index of Reff (MDR) with respect to the death rate due to the MDR -TB

disease dr is given as:

ΠReff (MDR)
dr

= ∂Reff (MDR)
∂dr

× dr
Reff (MDR) = − dr

ρr + µ+ dr
< 0
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implies dr has negative contribution for the transmission of multi-drug resistance tuber-

culosis. Therefore, increasing dr decreases Reff (MDR).

Using the data in table 7.1 the resulting sensitivity indices of Reff (DS) and Reff (MDR)

to the different parameters which involve in the effective reproduction numbers Reff (DS)

and Reff (MDR) respectively are shown in table 7.2 with the order from most sensitive

to the least:

Table 7.2: Numerical values of the sensitivity indices of Reff (MDR) and Reff (MDR)

with respect to each parameter involved in Reff (MDR) and Reff (MDR) respectively
Parameters Sensitivity index of Reff (DS) Parameters Sensitivity index of Reff (MDR)

c +1 c +1

ωs +1 ωs +1

ρs -0.99 ρr -0.82

ε -0.93 dr -0.17

η +0.81 ν -0.07

p -0.25 ψ -0.042

ψ -0.11 θ +0.038

γ +0.058 δ +0.014

θ +0.038 σ +0.011

α +0.015

σ +0.011

ds -0.0003

7.5 Discussion

In this work we considered non-linear dynamical system (5.1)-(5.10) to study the dynam-

ics of a two strain Tuberculosis disease. The effective reproduction number is:

Reff = c (σφµ+(θ+(1−φ)µ)
(θ+µ) max{ (ωs(αε(1−p)γη+α(γ+µ)(1−ε)(1−p)))

((α+µ)(γ+µ)(ρs+µ+ds)) , (ωr(1−ν)δ)
((δ+µ)(ρr+µ+dr))}. Then the nu-

merical value of Reff = max{1.03, 4.78} = 4.78. In the figure 7.3, the effective repro-

duction number of DS-TB, Reff (DS) < 1 when the number of contact of susceptible

individuals with an infectious, c < 10.7 and Reff (DS) > 1 when c > 10.7. Moreover, the
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effective reproduction number of MDR-TB, Reff (MDR) < 1 when number of contact of

susceptible individuals with an infectious, c < 2.3 and Reff (MDR) > 1 when c > 2.3.

Thus the only MDR TB spreads in the society when the value of 2.3 < c < 10; both

strains spread in the society if c > 10.7 and both strains do not spread in the society if

c < 2.3. Figure 7.4 shows that the effective reproduction number for both DS-TB and

MDR-TB strains (Reff (DS) > 1 and Reff (MDR) > 1) are greater than one for every

values of the rate of inefficacy of vaccine individuals, σ, therefore both strains of the TB

disease spread in the society what ever the value of σ is. Of course the transmision of

MDR-TB is higher than DS-TB.

Figure 7.5 shows that Reff (DS) < 1 when the rate of vaccine waning, θ < 0.038 and

Reff (DS) > 1 when θ > 0.038. But Reff (MDR) > 1 for all values of θ. This implies

that the MDR-TB spreads in the community for every value of θ. And for the value of

θ < 0.038 the DS-TB does not spread in the society. That is, if θ < 0.038 the only MDR-

TB spreads in the community and boths DS-TB and MDR-TB spreads in the community

when θ > 0.038. From figure 7.6 we observe that Reff (DS) < 1 when proportions new

born vaccinated per the total newly born babies, ψ > 0.8 and Reff (DS) > 1 when ψ < 0.8

while, Reff (MDR) > 1 for all values of ψ. This shows that the MDR-TB spreads in the

society for all values of ψ, but DS-TB spreads for ψ < 0.8. Implies both strain spreads in

the community if ψ < 0.8 and only MDR-TB spreads in the community if ψ > 0.8. This

indicates that giving BCG vaccine has no significant impact in the control of MDR-TB;

however we can reduce DS-TB by BCG vaccine.

From the sensitivity index of effective reproduction numbers (Table-7.2) we observe that

the parameters contact rate c, the rate of inefficacy of vaccine individuals σ, the rate of

vaccine waning θ, the probability of transmission ωs and ωr, the rate of progression of

individuals from early latently infected with DS-TB α, the progression rate from Long

latent DS-TB strain γ, the portion of Ls enter in to Is, η and the progression rate from

latent MDR-TB δ have positive contribution in the transmission of TB disease. While, the

proportions new born vaccinated ψ, natural death rate µ, the proportion of individuals

who do not get chance for screened at Hs and will go to Ls class ε, the proportion of

latent MDR-TB at early stage for treatment p, the recovery rates infectious individuals

ωs and ωr, the induced death rates ds and dr; and of the portion of E enter in to Ir, ν
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have negative impact on the transmission of TB disease.

From table 7.2, the parameter of which the sensitivity index of Reff (DS) or Reff (MDR)

has positive sign the effective reproduction number increase as these parameter increase

and vise verse, while for those parameters of which sensitivity index of Reff (DS) and

Reff (MDR) have negative sign then the effective reproduction number increase as the

parameters decrease and vise versa. The number of effective contact of susceptible or

vaccinated individual with an infectious individual of both strains c, the probability of

transmission followed by the recovery rates infectious individuals are the most influential

parameters in the spread and control of tuberculosis disease, this is because of that

magnitude of the sensitivity indices the effective reproduction Reff (DS) with respect to

the effective contact rate and the treatment rate ρs of the DS-TB infectious individuals;

and the sensitivity indices the effective reproduction Reff (MDR) with respect to the

effective contact rate and the treatment rate ρr of the MDR-TB infectious individuals

ρr are maximum compared to others. For all of those reasons, reducing the number

of effective contact and increasing recovery rate have great role to control tuberculosis

disease.

7.6 Conclusion

In this chapter we have presented and analyzed the numerical simulation on the two strain

TB model with interventions: vaccination of newly born babies, screening of latently

infected and treatments of infectious individuals for both strains of tuberculosis (DS-

TB and MDR-TB)(5.1)-(5.10). We estimate the value of parameters which involve the

dynamical system (5.1)-(5.10). We evaluated the numerical value of the reproduction

numbers. Consequently, Reff (DS) = 1.03 and Reff (MDR) = 4.78, which show that

the disease of both strain tuberculosis spread in the community and MDR-TB spreads

vastly in the society. The sensitivity analysis shows that the number of effective contact

of susceptible or vaccinated individual with an infectious individual of both strains is the

most influential parameter to change the reproduction number respectively.
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Chapter 8

Results, Conclusions and

Recommendations

8.1 Results

In this study, we have presented and analyzed mathematical model for the dynamics of

two strain Tuberculosis disease in Ethiopia. The objective of this study was analyzing

an epidemiological mathematical model for the spread and control of a two-strain tuber-

culosis model in Ethiopia. Under this section the summary of the results based on the

different chapters of the dissertation is discussed as below.

In Chapter Four, we considered a mathematical model with the effects of screening,

treatment and vaccination interventions on the dynamics of tuberculosis disease, the

model was formulated with the aim of assessing the impact of screening, treatment and

vaccination on the disease. The positivity and boundedness of solution of the dynamical

system (4.1)-(4.8) were investigated. Existence and stability of the equilibrium points

were studied. we applied Routh – Hurwitz criterion method and Laypunove function

to proof the local and global stability DFE. As the result, the disease free equilibrium

point was is locally asymptotically stable and globally stable for Reff < 1. Existence

of the endemic equilibrium point was also investigated and proved its local and global

stability. Thus, the endemic equilibrium point is local and global stability under a certain

179



condition.

In Chapter Five, we formulated a mathematical model (5.1)-(5.10) for tuberculosis disease

by disaggregating in two strains that is, drug sensitive and drug resistant tuberculosis.

Using the next generation matrix method, we computed the effective reproduction num-

bers. We have discussed on the existence of disease free equilibrium point, endemic equi-

librium (drug-sensitive TB only endemic equilibrium, drug-resistance TB only endemic

equilibrium and endemic equilibrium when both strains exist) points and presented the

conditions that the local and global stability of those equilibrium points.

In Chapter Six, we have used standard data to make numerical experimentation on the

dynamical system (4.1)-(4.8) formulated in chapter four. We got that the numerical value

of the effective reproduction number, Reff = 0.7, which shows that globally tuberculosis

speed slowly. The waning rate of Bacilli Calmette-Guérin (BCG) vaccine, followed by the

progression rate from long latently infected tuberculosis to active TB have a great role

to change the effective reproduction number. The result shows that vaccination alone

cannot eliminate tuberculosis disease from a population, but also other interventions are

needed.

In Chapter Seven, we have used real data collected from health sectors in Ethiopia to

undergo numerical experimentation on the dynamical system (5.1)-(5.10) formulated in

chapter five. We evaluated the numerical value of the effective reproduction numbers

Reff (DS) = 1.03 and Reff (MDR) = 4.78, which show that both strain tuberculosis

disease spread in the community and MDR-TB spreads vastly in the society. Sensitivity

analysis was performed on different parameters with the effective reproduction numbers,

Reff to understand how sensitive the model is to the different parameter values and

its structure dynamics using the normalized forward sensitivity index. The sensitivity

analysis shows that the number of effective contact of susceptible or vaccinated individual

with an infectious individual of both strains is the most influential parameter to change

the reproduction number respectively.
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8.2 Conclusions

The main objective of this research was to formulate and analyze mathematical models for

the dynamics of a two strain tuberculosis disease. Three interventions were incorporated

in the dynamical system that are, vaccination, screening and treatment. In this work;

1) We developed a mathematical model of the two-strain of tuberculosis.

2) We computed the effective reproduction numbers.

3) We investigated the existence of disease free and endemic equilibrium points and

proved both local and global stability of equilibrium points.

4) We investigated the impact of each parameters of the model on spread and control

of tuberculosis.

A non-linear dynamical system (4.1)-(4.8) with vaccination, screening and treatment

was formulated for the tuberculosis disease and takes place investigations on the basic

properties of the model and its solution. We computed the effective reproduction number.

We examined the existence of both disease free and endemic equilibrium points of the

corresponding dynamical system and proved their local and global stability.

We extend the dynamical system (4.1)-(4.8) by disaggregating the tuberculosis disease in

to two strain (drug sensitive and multi-drug resistance) tuberculosis, set our assump-

tions and formulate a non-linear dynamical system for two strain tuberculosis with

interventions vaccination, screening and treatment (5.1)-(5.10). We computed the ef-

fective reproduction numbers for drug sensitive tuberculosis (Reff (DS)), the effective

reproduction numbers for multi-drug resistance tuberculosis (Reff (MDR)) and the ef-

fective reproduction numbers for the considered dynamical system (5.1)-(5.10), Reff =

max{Reff (DS), Reff (MDR)}. In addition, We analyzed the existence and stability of

equilibrium points of the dynamical system (5.1)-(5.10).

To examine whether the TB disease spread in the society or not we calculated the nu-

merical value for effective reproduction number (Reff = 0.7) of the dynamical system

(4.1)-(4.8) and the result shows that globally TB disease does not spread in the society.
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The waning rate of Bacilli Calmette-Guérin (BCG) vaccine, followed by the progression

rate from long latently infected tuberculosis to active have a great role to change the

effective reproduction number.

We evaluated the numerical value of the effective reproduction numbers of the dynamical

system (5.1)-(5.10). Consequently, Reff (DS) = 1.03 and Reff (MDR) = 4.78, which

show that the disease of both strain tuberculosis spread in the community and MDR-

TB spreads vastly in the society. As the result numerical values of (Reff (DS)) and

(Reff (MDR)) are both greater than one; and so that both strain spread in the community

of Ethiopia of course MDR-TB transmits in the society more strongly than DS-TB. The

sensitivity analysis shows that the number of effective contact of susceptible or vaccinated

individual with an infectious individual of both strains is the most influential parameter

to change the effective reproduction numbers respectively in the Ethiopian context.

8.3 Recommendations

In this study we found that the numerical value of the effective reproduction number of

the drug sensitive and multi drug resistant tuberculosis dynamical system (5.1)−(5.10)

are Reff (DS) = 1.03 and Reff (MDR) = 4.78 respectively. Those are greater than unity

and from this we observe that both drug sensitive and multi drug resistant tuberculosis

disease spread in the community. To control the spread of the disease we have to be sure

that the numerical value of effective reproduction numbers are less than unity. For this,

we identified the following control parameters.

The first control parameter is the rate of the proportion of newly born BCG vaccinated

babies ψ. ψ = the number of newly born vaccinated babies
the total number of newly born babies = 0.49, where the number of newly born

vaccinated babies is 1887281 and the total number of newly born babies is 3845275.

The intersection point of Reff (DS) = 1 and the effective reproduction number of drug

sensitive tuberculosis as a function of the rate of proportion of newly born BCG vaccinated

babies Reff (DS)(ψ) is (ψ,Reff (DS)) = (0.8, 1). Therefore, for effective reproduction

drug sensitive strain to be less than unity, the control parameter ψ should be greater

than 0.8. But from the real data we obtained that ψ = 1887281
3845275 = 0.49. Hence, this value
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should approach 0.8 by fixing the total number of newly born babies on 3845275 and

increasing the number of newly born vaccinated babies from 1887281 to 3076220.

The second control parameter is the rate of the proportion of screened latent drug sensitive

tuberculosis infected at early stage for treatment p. p = the number of screened early latent DS-TB infected
the total number of early latent DS-TB infected =

0.2, where the number of screened early latent DS-TB infected is 83546 and the total num-

ber of early latently infected DS-TB is 417729. The intersection point of Reff (DS) = 1

and the effective reproduction number of drug sensitive tuberculosis as a function of

the proportion of screened latent drug sensitive tuberculosis infected at early stage

Reff (DS)(p) is (p,Reff (DS)) = (0.22, 1). Therefore, for effective reproduction num-

ber of drug sensitive strain to be less than unity, the control parameter p should be

greater than 0.22. But from the real data we obtained that p = 83546
417729 = 0.2. Hence, this

value should approach 0.22 by fixing the total number of early latently infected DS-TB

on 417729 and increasing the number of screened early latent DS-TB infected from 83,546

to 91,900.

The third control parameter is the rate of the proportion of screened latently infected

MDR-TB for treatment ν. ν = the number of screened latent MDR-TB infected
the total number of latent MDR-TB infected = 0.065, where the

number of screened latently MDR-TB infected is 528 and the total number of latently

infected MDR-TB is 8098. The intersection point of Reff (MDR) = 1 and the effective

reproduction number of multi drug resistant tuberculosis as a function of the proportion

of screened latently infected MDR-TB, Reff (MDR)(ν) is (ν,Reff (MDR)) = (0.8, 1).

Therefore, for effective reproduction number of multi drug resistant strain to be less than

unity, the control parameter ν should be greater than 0.8. But from the real data we

obtained that ν = 528
8098 = 0.065. Hence, this value should approach 0.8 by fixing the total

number of latently infected MDR-TB on 8098 and increasing the number of screened

latently MDR-TB infected from 528 to 6478.

The fourth control parameter is the recovery rate of active DS-TB ρs.

ρs = 1
the mean infection period of active DS-TB = 0.83, where the mean infection period of active

DS-TB is 1.2 years. The intersection point of Reff (DS) = 1 and the effective reproduction

number of drug sensitive tuberculosis as a function of the recovery rate of active DS-TB,

Reff (DS)(ρs) is (ρs, Reff (DS)) = (0.85, 1). Therefore, for effective reproduction number

of drug sensitive strain to be less than unity, the control parameter ρs should be greater

183



than 0.85. But from the real data we obtained that ρs = 1
1.2 years = 0.83. Hence, this

value should approach 0.85 by decreasing the mean infection period of active DS-TB from

1.2 years to 1.18 years.

The fifth control parameter is the recovery rate of active MDR-TB ρr.

ρr = 1
the mean infection period of active MDR-TB = 0.498, where the mean infection period of active

MDR-TB is 2.01 years. The intersection point of Reff (MDR) = 1 and the effective

reproduction number of multi drug resistant tuberculosis as a function of the recovery

rate of active MDR-TB, Reff (MDR)(ρr) is (ρr, Reff (MDR)) = (2.8, 1). Therefore, for

effective reproduction number of multi drug resistant strain to be less than unity, the

control parameter ρr should be greater than 2.8. But from the real data we obtained that

ρr = 1
2.01 years = 0.498. Hence, this value should approach 2.8 by decreasing the mean

infection period of active MDR-TB from 2.01 years to 0.4 years.

The sixth control parameter is the rate of the average number of susceptible or vaccinated

individuals contact with an infectious individual c. The intersection point of Reff (DS) =

1 and the effective reproduction number of drug sensitive tuberculosis as a function of c,

Reff (DS)(c) is (c, Reff (DS)) = (10.7, 1) and the intersection point of Reff (MDR) = 1

and the effective reproduction number of multi drug resistant tuberculosis as a function

of c, Reff (MDR)(c) is (c, Reff (MDR)) = (2.3, 1). Therefore, for effective reproduction

number of drug sensitive strain to be less than unity, the control parameter c should be

less than 10.7 and; for effective reproduction number of multi drug resistant strain to be

less than unity, the control parameter c should be less than 2.3. But from the real data

we obtained that c = 11. Hence, to control the disease this value should decrease from

11 to 2.
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